Neuroscience
-
Glutamate (Glu) is known as the main excitatory neurotransmitter in the central nervous system. It can trigger a series of processes ranging from synaptic plasticity to neurophysiological regulation. To carry out its functions, Glu acts via interaction with its cognate receptors, which are ligand-dependent. ⋯ Therefore, the aim of this review was to summarize the current knowledge regarding iGluRs, while describing their structures and molecular mechanisms of action, including their role in excitotoxicity, as well as the current strategies to reduce excitotoxic damage. Particularly, strategies mediated by prolactin, a somatotropin family-related hormone that displays a significant neuroprotective effect against both Glu and kainic acid-induced excitotoxicity in the hippocampus, are described. Finally, the role of prolactin as a possible molecule in the treatment of excitotoxicity in neurological diseases is discussed.
-
Ischemic stroke remains the third leading cause of death and leading cause of adult disability worldwide. A key event in the pathophysiology of stroke is the anoxic depolarization (AD) of neurons in the ischemic core. Previous studies have established that both the latency to AD and the time spent in AD prior to re-oxygenation are predictors of neuronal death. ⋯ Experiments using slices with fields Cornu ammonis 3 (CA3) and Cornu ammonis 1 (CA1) disconnected showed that AD latency is longer in CA1 than in CA3; however, the early AD in CA3 is propagated to CA1 in intact slices. Finally, AD latency in CA1 was found to be longer in slices from female mice than in those from age-matched male mice. The results have implications for stroke prevention and for understanding brain adaptations in hypoxia-tolerant animals.
-
As a textbook manifestation of an aggressive attitude, hostility can pose a serious threat to both an individual's life and the security of society at large. Past evidence suggests that some anxiety-related traits may be more prone to giving rise to hostility. However, many aspects of hostility, such as, determining the susceptible temperament for hostility, the neural basis of hostility, and the underlying mechanisms through which having a susceptible temperament generates hostility in a healthy brain, remain unclear. ⋯ Finally, we used a mediation analysis to explore the tripartite relationship between vulnerability temperament, the fractional anisotropy (FA) value of the white matter, and hostility. Our results suggest that a harm avoidance temperament may be susceptible to hostility and that the cingulum may be a key white matter region responsible for hostility. Based on these results, we developed a temperament-brain-attitude pathway showing how harm avoidance temperament could affect the brain and ultimately lead to hostility.
-
Major depressive disorder (MDD) is characterized by severe affective as well as cognitive symptoms. Moreover, cognitive impairment in MDD can persist after the remission of affective symptoms. Theta-burst stimulation (TBS) is a promising tool to manage the affective symptoms of major depressive disorder (MDD); however, its cognition-enhancing effects are sparsely investigated. ⋯ No effects of TBS on attention and working memory were detected, supported by a moderate-to-strong level of evidence. The effects of TBS on psychomotor processing speed should be further investigated. Bilateral TBS has a substantial antidepressive effect with no immediate adverse effects on executive functions.
-
Caveolin-1 (Cav-1) is a constitutive structural protein of caveolae in the plasma membrane. It plays an important role in maintaining blood brain barrier (BBB) integrity. In this study, we identified that miR-103-3p, a hypoxia-responsive miRNA, could interact with Cav-1. ⋯ Pre-SAH intracerebroventricularly injection of miR-103-3p antagomir relieved Cav-1 loss, sequentially reduced BBB permeability and improved neurological function. Finally, we demonstrated that the salutary effects of miR-103-3p antagomir were abolished in Cav-1 knock-out mice, suggesting that Cav-1 was required for the miR-103-3p inhibition-induced neurovascular protection. Taken together, our findings suggest that the inhibition of miR-103-3p could exert neuroprotective effects through preservation of Cav-1 and BBB integrity, making miR-103-3p a novel therapeutic target for SAH.