Neuroscience
-
Nociceptive stimulation is predicted to uniformly inhibit motoneurone pools of painful muscles and those producing painful movements. Although reduced motoneurone discharge rate during pain provides some evidence, recent data show evidence of increased excitability of some motoneurones. These observations suggest non-uniform effects of nociception on motoneurone excitability. ⋯ This does not support the hypothesis that nociceptive input induces uniform inhibition of painful muscle. Instead, interpretation of results implies redistribution of activity between motor units, with possible benefit for unloading painful tissues. This finding supports an interpretation that differs from the generally accepted view in pain physiology regarding adaptation to motor function in pain.
-
Dual orexinergic antagonists (DORAs) have been recently developed as a pharmacotherapy alternative to established hypnotics. Hypnotics are largely evaluated in preclinical rodent models in the dark/active period yet should be ideally evaluated in the light/inactive period, analogous to when sleep disruption occurs in humans. We describe here the hypnotic efficacy of DORA-22 in rodent models of sleep disturbance produced by cage changes in the light/inactive period. ⋯ EEG measures indicated that all DORA-22 doses largely promoted sleep in the first hour. The lowest dose (1 mg/kg) did not decrease sleep onset latency at the six-hour timepoint, suggesting no residual hypersomnolence. We described here DORA-22 hypnotic efficacy during the normal sleep period of nocturnal rats, and demonstrate that well-chosen (low) hypnotic doses of DORA-22 may be hypnotically effective yet have minimal lingering effects.
-
The left posterior inferior frontal gyrus in the prefrontal cortex is a key region for phonological aspects of language processing. A previous study has shown that alpha-tACS over the prefrontal cortex applied before task processing facilitated phonological decision-making and increased task-related theta power. However, it is unclear how alpha-tACS affects phonological processing when applied directly during the task. ⋯ As an unexpected finding, 16.18 Hz significantly impaired task accuracy relative to sham stimulation, without affecting response speed. There was no significant difference in phonological task performance between 10 Hz and 16.18 Hz tACS or between 10 Hz and sham stimulation. Our results support the functional relevance of the left prefrontal cortex for phonological decisions and suggest that online beta-tACS may modulate language comprehension.
-
Inflammasomes are key components of the innate immune system and activation of these multiprotein platforms is a crucial event in the etiopathology of amyotrophic lateral sclerosis (ALS). Inflammasomes consist of a pattern recognition receptor (PRR), the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and caspase 1. Exogenous or endogenous "danger signals" can trigger inflammasome assembly and promote maturation and release of pro-inflammatory cytokines, including interleukin 1β. ⋯ Staining of AIM2 was detected in all types of glia, whereas glial type-specific labelling was observed for NLRP1 and NLRC4. Our findings revealed pathology-related and cell type-specific differences in the expression of subsets of PRRs. Besides NLRP3, NLRC4 appears to be linked more closely to ALS pathogenesis.
-
The mitogen-activated protein kinases (MAPK) are major signaling components of intracellular pathways required for memory consolidation. Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2) mediate signal transduction downstream of MAPK. MSKs are activated by Extracellular-signal Regulated Kinase 1/2 (ERK1/2) and p38 MAPK. ⋯ Loss of Msk1, but not of Msk2, affected excitatory synaptic transmission at perforant path-to-dentate granule cell synapses, altered short-term presynaptic plasticity, impaired selectively long-term spatial recognition memory, and decreased basal levels of CREB and its activated form. LTP in vivo and LTP-induced CREB phosphorylation and EGR1 expression were unchanged after Msk1 or Msk2 deletion. Our findings demonstrate a dissimilar contribution of MSKs proteins in cognitive processes and suggest that Msk1 loss-of-function only has a deleterious impact on neuronal activity and hippocampal-dependent memory consolidation.