-
- Junjun Zhang, Yujuan Zhang, Meiling Xu, Zhigang Miao, and Ye Tian.
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, China; Institute of Radiotherapy and Oncology, Soochow University, China; Suzhou Key Laboratory for Radiation Oncology, China.
- Neuroscience. 2021 May 21; 463: 204-215.
AbstractRadiation-induced cognitive dysfunction is a common complication associated with cranial radiation therapy. Inhibition of hippocampal neurogenesis and proliferation plays a critical role in this complication. Relieving hippocampal apoptosis may significantly protect hippocampal neurogenesis and proliferation. Previous studies have demonstrated that hyperactivity of cyclin-dependent kinase 5 (Cdk5) is closely related to apoptosis. The exact molecular changes and function of Cdk5 in radiation-induced cognitive dysfunction are still not clear. Whether inhibition of Cdk5 and the relevant caspase-3 could improve hippocampal neurogenesis and ameliorate radiation-induced cognitive dysfunction needs further exploration. We hypothesized that inhibition of the Cdk5/caspase-3 pathway by p5-TAT could protect hippocampal neurogenesis and alleviate radiation-induced cognitive dysfunction. In our study, we reported that radiation induced hyperactivity of Cdk5 accompanied by elevation of the levels of cleaved caspase-3, a marker of neuronal apoptosis. Inhibition of hippocampal neurogenesis and proliferation as well as cognitive dysfunction was also observed. p5-TAT, a specific inhibitor of Cdk5, decreased the overactivation of Cdk5 without affecting the levels of Cdk5 activators. Additionally, this treatment suppressed the expression of cleaved caspase-3. We further demonstrated that p5-TAT treatment reduced hippocampal dysfunction and improved behavioral performance. Therefore, Cdk5 inhibition by the small peptide p5-TAT is a promising therapeutic strategy for radiation-induced cognitive dysfunction.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.