• Neuroscience · May 2021

    Inhibition of the CDK5/caspase-3 pathway by p5-TAT protects hippocampal neurogenesis and alleviates radiation-induced cognitive dysfunction.

    • Junjun Zhang, Yujuan Zhang, Meiling Xu, Zhigang Miao, and Ye Tian.
    • Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, China; Institute of Radiotherapy and Oncology, Soochow University, China; Suzhou Key Laboratory for Radiation Oncology, China.
    • Neuroscience. 2021 May 21; 463: 204-215.

    AbstractRadiation-induced cognitive dysfunction is a common complication associated with cranial radiation therapy. Inhibition of hippocampal neurogenesis and proliferation plays a critical role in this complication. Relieving hippocampal apoptosis may significantly protect hippocampal neurogenesis and proliferation. Previous studies have demonstrated that hyperactivity of cyclin-dependent kinase 5 (Cdk5) is closely related to apoptosis. The exact molecular changes and function of Cdk5 in radiation-induced cognitive dysfunction are still not clear. Whether inhibition of Cdk5 and the relevant caspase-3 could improve hippocampal neurogenesis and ameliorate radiation-induced cognitive dysfunction needs further exploration. We hypothesized that inhibition of the Cdk5/caspase-3 pathway by p5-TAT could protect hippocampal neurogenesis and alleviate radiation-induced cognitive dysfunction. In our study, we reported that radiation induced hyperactivity of Cdk5 accompanied by elevation of the levels of cleaved caspase-3, a marker of neuronal apoptosis. Inhibition of hippocampal neurogenesis and proliferation as well as cognitive dysfunction was also observed. p5-TAT, a specific inhibitor of Cdk5, decreased the overactivation of Cdk5 without affecting the levels of Cdk5 activators. Additionally, this treatment suppressed the expression of cleaved caspase-3. We further demonstrated that p5-TAT treatment reduced hippocampal dysfunction and improved behavioral performance. Therefore, Cdk5 inhibition by the small peptide p5-TAT is a promising therapeutic strategy for radiation-induced cognitive dysfunction.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…