Neuroscience
-
Transglutiminase-2 (TG2) is a multifunctional enzyme that has been implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) using global knockout mice and TG2 selective inhibitors. Previous studies have identified the expression of TG2 in subsets of macrophages-microglia and astrocytes after EAE. The aims of the current investigation were to examine neuronal expression of TG2 in rodent models of chronic-relapsing and non-relapsing EAE and through co-staining with intracellular and cell death markers, provide insight into the putative role of TG2 in neuronal pathology during disease progression. ⋯ TG2 induction occurred concurrently with the upregulation of the blood vessel permeability factor and angiogenic molecule Vascular Endothelial Growth Factor (VEGF). Extracellular TG2 was found to juxtapose with fibronectin, within and surrounding blood vessels. Though molecular and pharmacological studies have implicated TG2 in the induction and severity of EAE, the cell autonomous functions of this multifunctional enzyme during disease progression remains to be elucidated.
-
The reward system plays an important role in the pathogenesis of not only drug addiction, but also diet-induced obesity. Recent studies have shown that insulin and leptin receptor signaling in the ventral tegmental area (VTA) regulate energy homeostasis and that their dysregulation is responsible for obesity and altered food preferences. Although a high-fat diet (HFD) induces inflammation that leads to insulin and leptin resistance in the brain, it remains unclear whether HFD induces inflammation in the VTA. ⋯ In experiments using these mice, Akt phosphorylation in the VTA was significantly decreased after intracerebroventricular injection of insulin, whereas no change in STAT3 phosphorylation was found with leptin. Taken together, these results suggest that HFD induces inflammation at least partly associated with microglial activation in the VTA leading to insulin resistance, independently of the energy balance. Our data provide new insight into the pathophysiology of obesity caused by a dysfunctional reward system under HFD conditions.
-
By the effort to identify candidate signaling molecules important for the formation of robust circadian rhythms in the suprachiasmatic nucleus (SCN), the mammalian circadian center, here we characterize the role of α2δ proteins, synaptic molecules initially identified as an auxiliary subunit of the voltage dependent calcium channel, in circadian rhythm formation. In situ hybridization study demonstrated that type 3 α2δ gene (α2δ3) was strongly expressed in the SCN. ⋯ Cultured SCN slices from Per1-luc transgenic Cacna2d3-/- mice revealed reduced synchrony of Per1-luc gene expression rhythms among SCN neurons. These findings suggest that α2δ3 is essential for synchronized cellular oscillations in the SCN and thereby contributes to enhancing the sustainability of circadian rhythms in behavior.
-
Despite the high prevalence of major depressive disorder (MDD), understanding of the biological underpinnings remains limited. Rodent models suggest that changes in activity and output of dopamine (DA) neurons in the ventral tegmental area (VTA) are important for depressive-like phenotypes. Additionally, brain inflammatory processes are thought to contribute to MDD pathology and inflammation in the VTA has been linked to changes in VTA DA neuronal activity. ⋯ In contrast, IL-1β expression was unchanged in male or female mice following SCVS. No significant increases in VTA ionized calcium binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) immunochemistry were detected following CSDS that would be indicative of a robust inflammatory response. In conclusion, we show that chronic stressors distinctively alter expression of proinflammatory genes in the VTA and changes may depend on the severity and time-course of the stress exposure.
-
Treatments promoting post-stroke functional recovery continue to be an unmet therapeutic problem with physical rehabilitation being the most reproduced intervention in preclinical and clinical studies. Unfortunately, physiotherapy is typically effective at high intensity and early after stroke - requirements that are hardly attainable by stroke survivors. The aim of this study was to directly evaluate and compare the dose-dependent effect of delayed physical rehabilitation (daily 5 h or overnight voluntary wheel running; initiated on post-stroke day 7 and continuing through day 21) on recovery of motor function in the mouse photothrombotic model of ischemic stroke and correlate it with angiogenic potential of the brain. ⋯ Western blotting and immunofluorescence microscopy experiments evaluating the expression of angiogenesis-associated proteins VEGFR2, doppel and PDGFRβ in the peri-infarct and corresponding contralateral motor cortices indicate substantial upregulation of these proteins (≥2-fold) in the infarct core and surrounding cerebral cortex in the overnight running mice on post-stroke day 21. These findings indicate that there is a dose-dependent relationship between the extent of voluntary exercise, motor recovery and expression of angiogenesis-associated proteins in this expert-recommended mouse ischemic stroke model. Notably, our observations also point out to enhanced angiogenesis and presence of pericytes within the infarct core region during the chronic phase of stroke, suggesting a potential contribution of this tissue area in the mechanisms governing post-stroke functional recovery.