Neuroscience
-
Parkinson's disease (PD) is characterized by tremor, rigidity, and bradykinesia. PD is caused mainly by depletion of the nigrostriatal pathway. Conventional medications such as levodopa are highly effective in the early stage of PD; however, these medications fail to prevent the underlying neurodegeneration. ⋯ For example, although fetal ventral midbrain is efficacious in some patients, its ethical issues and the existence of graft-induced dyskinesias (GID) have prevented its use in large-scale clinical applications. ESCs have reliable isolation protocols and the potential to differentiate into dopaminergic progenitors. iPSCs and induced neural cells are suitable for autologous grafting. Here we review milestone improvements and emerging sources for cell-based PD therapy to serve as a framework for clinicians and a key reference to develop replacement therapy for other neurological disorders.
-
Ensuring stability of the human vertical posture is a complex task requiring both anticipatory and compensatory postural strategies when a standing person performs fast actions and interacts with the environment, which can include other persons. How people adjust their preparatory and compensatory postural adjustments in situations when they interact with an active partner is still poorly understood. In this study we investigated the postural adjustments while two healthy persons played a traditional childhood game. ⋯ Results showed higher indices of muscle co-activation during EPAs during the game compared to the control conditions. We found that postural preparation strategies defined whether a participant kept or lost balance during the game. Our results highlight the importance of muscle co-activation, the role of anticipation, and the difference in strategies while interacting with an active partner as compared to interactions with passive objects.
-
Because somatosensory PNS neurons, in particular nociceptors, are specially tuned to be able to detect a wide variety of both exogenous and endogenous signals, one might assume that these neurons express a greater variety of receptor genes. This assumption has not been formally tested. Because cells detect such signals via cell surface receptors, we sought to formally test the hypothesis that PNS neurons might express a broader array of cell surface receptors than CNS neurons using existing single cell RNA sequencing resources from mouse. ⋯ Finally, we sought to examine specific ligand-receptor interactions between T cells and PNS and CNS neurons. Again, we noted that most interactions between these cells are shared by CNS and PNS neurons despite the fact that T cells only enter the CNS under rare circumstances. Our findings demonstrate that both PNS and CNS neurons express an astonishing array of cell surface receptors and suggest that most neurons are tuned to receive signals from other cells types, in particular immune cells.
-
The Wechsler Adult intelligence scale-Revised (WAIS-R) Block design test (BDT) is a neuropsychological test widely used to assess cognitive declines in aging population. Previous studies suggest parietal lobe is the key region to influence the performance on the BDT; yet, it has not been clearly identified. The aim of the current study, therefore, is to identify the functional neural correlates of the BDT in older adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia patients. ⋯ The same analyses were conducted on the subgroups categorized by clinical severity based on the Clinical Dementia Rating (CDR). Significant positive correlations between performance on the BDT and regional cerebral glucose metabolism were found bilaterally in the inferior parietal lobules, right thalamus and right middle frontal gyrus. Our results suggest that performance on the BDT in MCI and AD patients functionally relies on the brain regions known to be associated with motor and executive functions in addition to visuospatial function.
-
Adverse experiences that occur during the early stages of life can have permanent repercussions in adulthood. Among these experiences, early weaning is one that can alter the molecular, cellular, and behavior patterns in later life. Centered on this fact, the objective of the current study was to evaluate the effect of early weaning at 15 days of life of Wistar rats on their feeding behavior and if the opioidergic system blockade would cause a reversal of these outcomes. ⋯ Those weaned at 15 days of age exhibited higher depressive-like behavior, lesser reactivity time to sucrose, and higher intake of palatable food than the control group. The Naltrexone administration was observed to reverse some outcomes, such as increasing the reactivity time to sucrose and decreasing the quantity of palatable food consumed, to levels similar to those of the control group. Together, the findings of the present study are indicative of the vital role played by the opioidergic system in inducing the changes noted in the eating behavior patterns during adulthood, post early weaning.