Neuroscience
-
Thalamocortical dysfunction is thought to underlie the pathophysiology of chronic pain revealed by electroencephalographic studies. The thalamus serves as a primary relay center to transmit sensory information and motor impulses via dense connections with the somatosensory and motor cortex. In this study, diffusion tensor imaging (DTI) (probabilistic tractography) and resting-state functional magnetic resonance imaging (functional connectivity) were used to characterize the anatomical and functional integrity of the thalamo-sensorimotor pathway in chronic low back pain (cLBP). ⋯ Moreover, there was significantly altered resting-state functional connectivity (rsFC) of bilateral thalamo-motor/somatosensory pathways in patients with cLBP as compared to healthy controls. We also detected a significant correlation between pain intensity during the MRI scan and rsFC of the right thalamo-somatosensory pathway in cLBP. Our findings highlight the involvement of the thalamo-sensorimotor circuit in the pathophysiology of cLBP.
-
Although altered microstructure properties of white-matter tracts have been reported in children with attention-deficit/hyperactivity disorder (ADHD), findings from relatively few adult ADHD studies are inconsistent. This study aims to examine microstructural property over the whole brain in adults with ADHD and explore structural connectivities. Sixty-four medication-naïve adults with ADHD and 81 healthy adults received diffusion spectrum imaging. ⋯ Adults with ADHD had increased mGFA values in the segments located in the left frontal aslant tract, the right inferior longitudinal fasciculus, and the left perpendicular fasciculus, and reduced mGFA values in the segments located in the right superior longitudinal fasciculus (SLF) I, the left SLF II, the right frontostriatal tracts from dorsolateral prefrontal cortex and the ventrolateral prefrontal cortex, the right medial lemniscus, the right inferior thalamic radiation to the auditory cortex, and the callosal fibers. Additionally, the mGFA value of the right SLF I segment was associated with hyperactivity-impulsivity symptoms. Our findings suggest that white-matter tracts with altered microstructure properties are located within the attention networks, fronto-striato-thalamocortical regions, and those associated with attention and visual perception in adults with ADHD.
-
Ferroptosis is an iron-dependent form of regulated cell death, which is driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid peroxidation. Ferroptosis is implicated in various diseases involving neuronal injury. However, the role of ferroptosis in hypoxic-ischemic brain damage (HIBD) has not been elucidated. ⋯ These changes resulted in diminished cellular antioxidant capacity and mitochondrial damage, causing neuronal ferroptosis in the cerebral cortex. We conclude that ferroptosis plays a role in HIBD in neonatal rats. Ferroptosis-related mechanisms such as abnormalities in iron metabolism, amino acid metabolism, and lipid peroxidation regulation play important roles in HIBD.
-
This study uses simple tasks to induce self-conscious emotions and event-related potentials to investigate the effects of pride, neutral, and shame emotions on cognitive flexibility. The behavior results revealed that the switching tasks had a longer reaction time and a lower accuracy rate than the repetitive tasks. Furthermore, the reaction time was longer, and the accuracy rate was lower for individuals in the shame and pride emotions group than the neutral group. ⋯ These findings imply that pride and shame may inhibit conversion ability and consistently affect cognitive flexibility. This consistency may be manifested in late decision-making tasks. Our finds provide a theoretical basis for management of students' pride and shame.
-
Previous studies have reported altered neuroimaging features in right temporal lobe epilepsy (rTLE). However, the alterations in degree centrality (DC) as a diagnostic method for rTLE have not been reported. Therefore, we aimed to explore abnormalities in the DC of the rTLE and whether such alterations could be applied to the diagnosis of rTLE. ⋯ The highest diagnostic accuracy of 99.34% (150/151), based on SVM analysis, was demonstrated for the combination of abnormal DC in the right IPL and the left SFGdor, along with a sensitivity of 100% (82/82), and a specificity of 98.55% (68/69) for the differentiation of rTLE patients from healthy controls. The study demonstrated abnormal functional connectivity in rTLE patients. Thus, a distinctive DC pattern may serve as an imaging marker for the diagnosis of rTLE patients.