Neuroscience
-
Recessive mutations in GRXCR2 cause deafness in both humans and mice. In Grxcr2 null hair cells, the sensory receptors for sound in the inner ear, stereocilia are disorganized. Reducing the expression of taperin, a protein that interacts with GRXCR2 at the base of stereocilia, corrects the morphological defects of stereocilia and restores hearing in Grxcr2 null mice. ⋯ Then Grxcr2 null mice were crossed with one of these taperin mutant mice. The following morphological analysis revealed that reducing taperin expression indeed corrected stereocilia morphological abnormalities in Grxcr2 null mice. Functional analysis further confirmed that reducing taperin expression partially restored hearing in Grxcr2 null mice.
-
Although the exact etiology of Parkinson's disease (PD) is still unknown, there are a variety of treatments available to alleviate its symptoms according to the development stage of PD. Deep brain stimulation (DBS), the most common surgical treatment for advanced PD, accurately locates and implants stimulating electrodes at specific targets in the brain to deliver high-frequency electrical stimulation that alters the excitability of the corresponding nuclei. However, for different patients and stages of PD development, there exists a choice of the optimal DBS protocol. ⋯ Lastly, the evolution of the network state from normal to pathological is simulated. The critical point of network state transitions is determined. These results provide a quantitative and qualitative method for determining the optimal regimen for DBS for PD, which is helpful for clinical practice.
-
The beneficial effects of exercise on human brain function have been demonstrated in previous studies. Myokines secreted by muscle have attracted increasing attention because of their bridging role between exercise and brain health. Regulated by PPARγ coactivator 1α, fibronectin type III domain-containing protein 5 releases irisin after proteolytic cleavage. ⋯ Meanwhile, irisin has anxiolytic and antidepressant effects. The potential therapeutic effects of irisin in epilepsy and pain have been initially revealed. Due to the pleiotropic and beneficial properties of irisin, the possibility of irisin treating other neurological diseases could be gradually explored in the future.
-
Cellular senescence is an important contributor to aging and age-related diseases such as Alzheimer's disease (AD). Senescent cells are characterized by a durable cell proliferation arrest and the acquisition of a proinflammatory senescence-associated secretory phenotype (SASP), which participates in the progression of neurodegenerative disorders. Clearance of senescent glial cells in an AD mouse model prevented cognitive decline suggesting pharmacological agents targeting cellular senescence might provide novel therapeutic approaches for AD. Δ133p53α, a natural protein isoform of p53, was previously shown to be a negative regulator of cellular senescence in primary human astrocytes, with clinical implications from its diminished expression in brain tissues from AD patients. ⋯ Our data suggest that Aβ-induced astrocyte cellular senescence is associated with accelerated DNA damage, and upregulation of full-length p53 and its senescence-inducing target gene p21WAF1. We also show that exogenously enhanced expression of Δ133p53α rescues human astrocytes from Aβ-induced cellular senescence and SASP through both protection from DNA damage and dominant-negative inhibition of full-length p53, leading to inhibition of Aβ-induced, astrocyte-mediated neurotoxicity. The results presented here demonstrate that Δ133p53α manipulation could modulate cellular senescence in the context of AD, possibly opening new therapeutic avenues.
-
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. ⋯ However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.