Neuroscience
-
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disorder that results in irreversible cognitive impairments. Nonetheless, there are numerous sex-dependent differences in clinical course. We examined potential contributions of neurovascular coupling deficits to sex differences in AD progression. ⋯ There were significant group × sex interaction effects on short-range coupling ratios of right middle temporal gyrus, left angular gyrus, left inferior orbital frontal gyrus, and left superior frontal gyrus as well as on the long-range coupling ratios of right middle temporal gyrus, left precuneus, left posterior cingulate cortex, and left angular gyrus. There were significant negative correlations between MMSE scores and CBF/FCS ratios for all regions with significant group × sex interactions among female patients, while positive correlations were found among male patients. Our results demonstrate significant sex differences in neurovascular coupling mechanisms associated with cognitive function during the course of AD.
-
Perceptual decisions rely on accumulating sensory evidence over time. However, the accumulation process is complicated in real life when evidence resulted from separated cues over time. ⋯ We used behavioral and EEG datasets from a visual choice task -Random dot motion- with separated evidence to investigate three candid distributed neural networks. We showed that decisions based on evidence accumulation by separated cues over time are best explained by the interplay of recurrent cortical dynamics of centro-parietal and frontal brain areas while an uncertainty-monitoring module included in the model.
-
The inversion of a picture of a face hampers the accuracy and speed at which observers can perceptually process it. Event-related potentials and pupillary responses, successfully used as biomarkers of face inversion in the past, suggest that the perception of visual features, that are organized in an unfamiliar manner, recruits demanding additional processes. However, it remains unclear whether such inversion effects generalize beyond face stimuli and whether indeed more mental effort is needed to process inverted images. ⋯ We simultaneously measured responses of 47 human participants to presentations of images showing upright or inverted natural scenes. For inverted scenes, we observed relatively stronger occipito-temporo-parietal N1 peak amplitudes and larger pupil dilations (on top of an initial orienting response) than for upright scenes. This study revealed neural and physiological markers of natural scene inversion that are in line with inversion effects of other stimulus types and demonstrates the robustness and generalizability of the phenomenon that unfamiliar configurations of visual content require increased processing effort.
-
Visuospatial attention allows humans to selectively gate and prioritize visual (including salient, emotional) information for efficiently navigating natural visual environments. As emotions have been known to influence attentional performance, we asked if emotions also modulate the spatial distribution of visual attention and whether any such effect was further associated with individual differences in anxiety. Participants (n = 28) discriminated the orientation of target Gabor patches co-presented with distractors, speedily and accurately. ⋯ No correlation was observed between state - anxiety and the emotion-cued attention gradients. In sum, the results suggest that individual trait - anxiety levels influence the effect of negative and physiologically arousing emotion signals (e.g., Disgust) on the spatial distribution of visual attention. The findings could be of relevance for understanding biases in visual behaviour underlying affective states and disorders.
-
Metabotropic glutamate receptor subtype 7 (mGluR7) is a member of the group III mGluRs, which localize to presynaptic active zones of the central nervous system. We previously reported that mGluR7 knockout (KO) mice exhibit ejaculatory disorders, although they have normal sexual motivation. We hypothesized that mGluR7 regulates ejaculation by potentiating the excitability of the neural circuit in the lumbosacral spinal cord, because administration of the mGluR7-selective antagonist into that region inhibits drug-induced ejaculation. ⋯ Histological examination indicated that mGluR7 controls sympathetic neurons as well as parasympathetic neurons. In view of the complexity of its synaptic regulation, mGluR7 might control ejaculation by multi-level and multi-modal mechanisms. Our study provides insight into the mechanism of ejaculation as well as a strategy for future therapies to treat ejaculatory disorders in humans.