Neuroscience
-
Diabetes Mellitus (DM) and Alzheimer's disease (AD) have been two of the most common chronic diseases affecting people worldwide. Type 2 DM (T2DM) is a metabolic disease depicted by insulin resistance, dyslipidemia, and chronic hyperglycemia while AD is a neurodegenerative disease marked by Amyloid β (Aβ) accumulation, neurofibrillary tangles aggregation, and tau phosphorylation. Various clinical, epidemiological, and lipidomics studies have linked those diseases claiming shared pathological pathways raising the assumption that diabetic patients are at an increased risk of developing AD later in their lives. ⋯ Lipidomics, an analysis of lipid structure, formation, and interactions, evidently exhibits these lipid changes and their direct and indirect effect on Aβ synthesis, insulin resistance, oxidative stress, and neuroinflammation. In this review, we have discussed the pathophysiology of T2DM and AD, the interconnecting pathological pathways they share, and the lipidomics where different lipids such as cholesterol, phospholipids, sphingolipids, and sulfolipids contribute to the underlying features of both diseases. Understanding their role can be beneficial for diagnostic purposes or introducing new drugs to counter AD.
-
Mitophagy plays a significant role in modulating the activation of pyrin domain-containing protein 3 (NLRP3) inflammasome, which is a major contributor to the inflammatory response that exacerbates cerebral ischemia-reperfusion (I/R) injury. Despite this, the transcriptional regulation mechanism that governs mitophagy remains unclear. This study sought to explore the potential mechanism of Forkhead Box P1 (Foxp1) and its impact on cerebral I/R injury. ⋯ Furthermore, we confirmed through chromatin immunoprecipitation (ChIP) and luciferase reporter assays that FUNDC1 is a direct target gene of Foxp1 downstream. Furthermore, the knockdown of FUNDC1 reversed the increased activation of mitophagy and suppressed NLRP3 inflammasome activation induced by Foxp1 overexpression. Collectively, our findings suggest that Foxp1 inhibits NLRP3 inflammasome activation through FUNDC1 to reduce cerebral I/R injury.
-
Objectively measuring animal behavior is vital to understanding the neural circuits underlying pain. Recent progress in machine vision has presented unprecedented scope in behavioral analysis. Here, we apply DeepLabCut (DLC) to dissect mouse behavior on the thermal-plate test - a commonly used paradigm to ascertain supraspinal contributions to noxious thermal sensation and pain hypersensitivity. ⋯ In this study, we design a novel assay and formulate an analytical pipeline to facilitate the dissection of plasticity mechanisms in pain circuits in the brain. Last, we record and test how activating Tacr1 expressing PBN neurons (PBNTacr1) - a population responsive to sustained noxious stimuli- affects mouse behavior on the thermal plate test. Taken together, we demonstrate that by tracking a single body part of a mouse, we can reveal the behavioral signatures of mice exposed to noxious surface temperatures, report the alterations of the same when injured, and determine if a molecularly and anatomically defined pain-responsive circuit plays a role in the reflexive hypersensitivity to thermal pain.
-
Abnormal spontaneous neural activity in children with growth hormone deficiency (GHD) has been found in previous resting-state functional magnetic resonance imaging (rs-fMRI) studies. Nevertheless, the spontaneous neural activity of GHD in different frequency bands is still unclear. Here, we combined rs-fMRI and regional homogeneity (ReHo) methods to analyze the spontaneous neural activity of 26 GHD children and 15 healthy controls (HCs) with age- and sex-matching in four frequency bands: slow-5 (0.014-0.031 Hz), slow-4 (0.031-0.081 Hz), slow-3 (0.081-0.224 Hz), and slow-2 (0.224-0.25 Hz). ⋯ In the slow-4 band, GHD children relative to HCs revealed increased ReHo in the right middle temporal gyrus, whereas reduced ReHo in the left superior parietal gyrus, right middle occipital gyrus, and bilateral medial parts of the superior frontal gyrus. In the slow-2 band, compared with HCs, GHD children showed increased ReHo in the right anterior cingulate gyrus, and several prefrontal regions, while decreased ReHo in the left middle occipital gyrus, and right fusiform gyrus and anterior cingulate gyrus. Our findings demonstrate that regional brain activity in GHD children exhibits extensive abnormalities, and these abnormalities are related to specific frequency bands, which may provide bases for understanding its pathophysiology significance.
-
Social interactions between parents and children are closely linked with children's development, and interbrain synchrony has been shown to be a neural marker of social interaction. However, to truly capture the essence of social interactions through interbrain synchrony, it is necessary to simultaneously discuss the parental and child brains and adequately record neurological signals during parent-child interactions in interactive tasks. In the current review, we have reviewed three main contents. ⋯ Last, we have integrated four methods to enhance interbrain synchrony, including communication patterns, nonverbal behavior, music, and multichannel stimulation. A significant correlation exists between parent-child interbrain synchrony and the development of children's cognitive and behavioral abilities. This summary may be useful for expanding researchers' and practitioners' understanding of the ways in which parenting and the parent-child relationship shape children' cognitive and behavioral abilities.