Neuroscience
-
Ketamine is an anesthetic drug that has recently been approved for the treatment of treatment-resistant depression. Females are diagnosed with Major Depressive Disorder at higher rates than males, yet most of the pre-clinical research on ketamine has been conducted in male subjects. Additionally, the literature on the acute and long-term behavioral and cognitive effects of ketamine shows conflicting results. ⋯ Acute ketamine exposure decreased locomotor activity and increased anxiety-like behavior in the open field test compared to controls, while repeated ketamine exposure impaired memory in the novel object recognition test. There were no effects of acute or repeated ketamine exposure on depression-like behavior in the Porsolt forced swim test or on plasma corticosterone levels. These findings suggest that a subanesthetic dose of ketamine alters behavior and cognition in female mice and the effects are dependent on the duration of exposure.
-
Currently, there is a lack of treatments for retinal neurotrauma. To address this issue, this study uses an alpha7 nAChR agonist, PNU-282987, to determine it effects on functional activity in the retina shortly after a traumatic blast exposure. The objectives of this research include: (1) examination of the cellular and functional damage associated with ocular blast exposure, and (2) evaluation of structural and functional changes that occur post PNU-282987 treatment. ⋯ Scotopic ERG recordings from blast-exposed mice had significantly decreased amplitudes of a-wave, b-wave, oscillatory potentials and flicker frequencies, which were prevented after PNU-282987 treatment. In photopic experiments, the PhNR response was reduced significantly after blast exposure but the decrease was prevented after treatment with PNU-282987. These are the first experiments that demonstrate preservation of retinal function after blast exposure using an alpha7 nAChR agonist.
-
No curative or fully effective treatments are currently available for Alzheimer's disease (AD), the most common form of dementia. Electrical stimulation of deep brain areas has been proposed as a novel neuromodulatory therapeutic approach. Previous research from our lab demonstrates that intracranial self-stimulation (ICSS) targeting medial forebrain bundle (MFB) facilitates explicit and implicit learning and memory in rats with age or lesion-related memory impairment. ⋯ Results demonstrate that this Aβ model displayed spatial memory impairment in the retention test, accompanied by changes in the levels of DBN and ptau in lateral entorhinal cortex and hippocampus, resembling pathological alterations in early AD. Administration of MFB-ICSS treatment consisting of 5 post-training sessions to AD rats managed to reverse the memory deficits as well as the alteration in ptau and DBN levels. Thus, this paper reports both cognitive and molecular effects of a post-training reinforcing deep brain stimulation procedure in a sporadic AD model for the first time.
-
In Alzheimer's disease and related dementias, amyloid beta (Aβ) and amyloid plaques can disrupt long-term synaptic plasticity, learning and memory and cognitive function. Plaque accumulation can disrupt corticocortical circuitry leading to abnormalities in sensory, motor, and cognitive processing. In this study, using 5xFAD (five Familial Alzheimer's Disease - FAD - mutations) mice, we evaluated amyloid plaque formation in different cortical areas, and whether differential amyloid accumulation across cortical fields correlates with changes in dendritic complexity of layer 3 corticocortical projection neurons and functional responses in the primary somatosensory cortex following whisker stimulation. ⋯ Control mice show normal physiological responses in all three cortical areas, whereas 5xFAD mice only display physiological responses in S1. Taken together our results show that 5xFAD mutation affects the overall dendritic morphology of layer 3 pyramidal cells across sensory-motor and association cortex irrespective of the density and distribution of the Aβ amyloid proteins. Corticocortical circuitry between the sensory and motor/association areas is most likely disrupted in 5xFAD mice as cortical responses to whisker stimulation are altered.