Neuroscience
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the 2019 coronavirus disease (COVID-19), has affected more than 20 million people in Brazil and caused a global health emergency. This virus has the potential to affect various parts of the body and compromise metabolic functions. The virus-mediated neural inflammation of the nervous system is due to a storm of cytokines and oxidative stress, which are the clinical features of Alzheimer's disease (AD). ⋯ The cholinergic system, through neurons and the neurotransmitter acetylcholine (ACh), modulates various physiological pathways, such as the response to stress, sleep and wakefulness, sensory information, and the cognitive system. Patients with AD have low concentrations of ACh; hence, therapeutic methods are aimed at adjusting the ACh titers available to the body for maintaining functionality. Herein, we focused on acetylcholinesterase inhibitors, responsible for the degradation of ACh in the synaptic cleft, and muscarinic and nicotinic receptor agonists of the cholinergic system owing to the therapeutic potential of the cholinergic anti-inflammatory pathway in AD associated with SARS-CoV-2 infection.
-
Review
Relevance of biochemical deep phenotyping for a personalised approach to Parkinson's disease.
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder characterised by the progressive loss of dopaminergic neurons in the nigrostriatal tract. The identification of disease-modifying therapies is the Holy Grail of PD research, but to date no drug has been approved as such a therapy. A possible reason is the remarkable phenotypic heterogeneity of PD patients, which can generate confusion in the interpretation of results or even mask the efficacy of a therapeutic intervention. ⋯ The analyte most studied is α-synuclein, while other studies have focused on neurofilament light chain, lysosomal proteins, inflammasome-related proteins, LRRK2 and the urinary proteome. At present, stratification of PD patients, while promising, is still a nascent approach. Deep phenotyping of patients will allow clinical researchers to identify homogeneous subgroups for the investigation of tailored disease-modifying therapies, enhancing the chances of therapeutic success.
-
Nuclear TAR DNA-binding protein 43 (TDP-43) mitigates cellular function, but the dynamic nucleus-cytoplasm shuttling of TDP-43 is disrupted in diseases, such as Amyotrophic Lateral Sclerosis (ALS). The polymorphic nature of the TDP-43 structures in vitro and in vivo is a result of environmental factors leading to the protein pathogenesis. Once the triggers which mitigate TDP-43 biochemistry are identified, new therapies can be developed. This review aims to illustrate recent discoveries in the diversity of TDP-43 structures (amyloidogenic and non-amyloidogenic) and highlight the triggers which result in their formation.
-
Parkinson's disease (PD) is the world's second primary neurodegenerative disease, and the diagnosis and treatment of PD have become mainstream research. Over the past decades, several studies have identified potential biomarkers for diagnosing PD. Among them, extracellular vesicles (EVs) can carry specific biomarkers reflecting the physiological and pathological state of the body. ⋯ In this review, we summarized previous studies on PD diagnosis biomarkers in peripheral blood EVs and evaluated their diagnostic value. Some EV surface markers were also described, which can extract EVs from specific cell origins. In addition, the combination of several biomarkers demonstrated good diagnostic performance in PD diagnosis compared with a single biomarker, suggesting the focus of future research.
-
Mitochondrial dysfunctions have been described in Down syndrome (DS) caused by either partial or full trisomy of chromosome 21 (HSA21). Mitochondria play a crucial role in various vital functions in eukaryotic cells, especially in energy production, calcium homeostasis and programmed cell death. The function of mitochondria is primarily regulated by genes encoded in the mitochondrion and nucleus. ⋯ This includes impaired mitochondrial dynamics, structural defects and dysregulated bioenergetic profiles such as OXPHOS deficiency and reduced ATP production. Various therapeutic approaches for modulating energy deficits in DS, effects and molecular mechanism of gene therapy and drugs that exert protective effects through modulation of mitochondrial function and attenuation of oxidative stress in DS cells were discussed. It is prudent that improving DS pathophysiological conditions or quality of life may be feasible by targeting something as simple as cellular mitochondrial biogenesis and function.