Neuroscience
-
Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model. ⋯ Treatment of these rats with clozapine-N-oxide (CNO), an hM3Dq-activating drug, significantly improved characteristic FM model-induced pathophysiological pain, but did not alter depressive-like behavior. The chemogenetically induced effects were reversed by pre-treatment with an OXT receptor antagonist, confirming the specificity of action via the OXT pathway. These results indicate that endogenous OXT may have analgesic effects in FM, and could be a potential target for effective pain management strategies for this disorder.
-
Mapping variability in cortical spontaneous activity (CSA) is an essential goal of understanding various sources of dark brain energy in human neuroscience. CSA was traditionally characterized using resting-state functional MRI (rfMRI) at 1.5T or 3T magnets while recently with 7T-rfMRI. However, the utility and interpretability of 7T-rfMRI must first be established for its variability. ⋯ These effects were primarily located in the high-order associate cortex, parsing the corresponding changes in individual differences with respect to 7T-rfMRI: (1) higher connectivity variability between participants and the lower connectivity variability within individual participants, and (2) lower amplitude variability between participants and higher amplitude variability within participants. Our work, for the first time, demonstrated the variability of the human CSA across space, rfMRI settings/platforms, and individuals. We discussed the statistical implications of our findings on CSA-based experimental designs and reproducible neuroscience as well as their translational value for personalized applications.
-
Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. ⋯ In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.
-
Alzheimer's disease (AD) is a serious neurodegenerative disease characterized by amyloid-β (Aβ) aggregation and neuroinflammation. G-protein-coupled receptor 34 (Gpr34) was found highly expressed in the hippocampus of APP/PS1 mice. However, its role in AD remains unclear. ⋯ On the other hand, the in vivo study showed that Gpr34 knockdown ameliorated the cognitive impairment in APP/PS1 mice, decreased the levels of TNF-α, IL-1β and IL-6, the activation of microglia and ERK/NF-κB signal. In conclusion, Gpr34 knockdown relieved cognitive deficits in APP/PS1 mice and suppressed neuroinflammation and microglial activation, maybe via the ERK/NF-κB signal. It is indicated that the high level of Grp34 in hippocampus may contribute to the pathogenesis of AD.
-
There is a growing interest for studying the impact of chronic inflammation, particularly lung inflammation, on the brain and behavior. This includes asthma, a chronic inflammatory condition, that has been associated with psychiatric conditions such as posttraumatic stress disorder (PTSD). Although asthma is driven by elevated production of Th2 cytokines (IL-4, IL-5 and IL-13), which drive asthma symptomology, recent work demonstrates that concomitant Th1 or Th17 cytokine production can worsen asthma severity. ⋯ While HDM evoked a Th2-skewed immune response in lung tissue, no significant alterations in brain Th cell subsets were observed. Significantly reduced ΔFosB+ cells in the basolateral amygdala of HDM mice were observed post extinction. Our data indicate that allergen-driven Th2-skewed responses may induce fear extinction promoting effects, highlighting beneficial interactions of Th2-associated immune mediators with fear regulatory circuits.