Neuroscience
-
Long-term potentiation (LTP) is a widely studied phenomenon since the underlying molecular mechanisms are widely believed to be critical for learning and memory and their dysregulation has been implicated in many brain disorders affecting cognitive functions. Central to the induction of LTP, in most pathways that have been studied in the mammalian CNS, is the N-methyl-D-aspartate receptor (NMDAR). Philippe Ascher discovered that the NMDAR is subject to a rapid, highly voltage-dependent block by Mg2+. ⋯ It explains how this unusual molecular mechanism underlies the Hebbian nature of synaptic plasticity and the hallmark features of NMDAR-LTP (input specificity, cooperativity and associativity). Then the role of the Mg2+ block of NMDARs is discussed in the context of memory and dementia. In particular, the idea that alterations in the voltage-dependent block of the NMDAR is a component of cognitive decline during normal ageing and neurodegenerative disorders, such as Alzheimer's disease, is discussed.
-
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. ⋯ The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
-
Review
Dualism, Materialism, and the relationship between the brain and the mind in experiencing pain.
Characterizing the relationship between the brain and the mind is essential, both for understanding how we experience sensations and for attempts to create machine-based artificial intelligence. Materialists argue that the brain and the mind are both physical/material in nature whereas Cartesian dualists posit that the brain is material, the mind is non-material, and that they are separate. Recent investigations into the mechanisms responsible for pain can resolve this issue. ⋯ The material brain and immaterial mind are therefore separate and we can no longer attribute painfulness solely to the activities of the brain. This is a radical departure from the contemporary view of brain functions and supports Cartesian Dualism. Consequently, consciousness and higher mental functions cannot be duplicated by mimicking the activities of the brain.
-
Theta oscillations in observers' temporal cortex index postural instability of point-light displays.
This study investigates whether postural equilibration follows the same principles of motor resonance as goal-oriented actions, namely, whether an individual activates the same neuronal substrates when experiencing postural perturbation as when observing another individual in this condition. To address this question, we examined electroencephalographic dynamics while subjects observed point-light displays featuring an unstable human display, a stable human display, and their respective scrambled counterparts lacking shape information and biological motion. We focused on theta band (4-7 Hz), which is a fundamental frequency for modulating brain activity during challenging balance tasks and reflects postural stability monitoring. ⋯ By contrast, the stronger theta response to the stable display as compared to the unstable one could be due to the difficulty of recognizing low-motion biological stimuli, or alternatively, to a facilitation of stimulus processing and strengthening of the mirroring response. The response facilitation for stable posture, coupled with a diminished response to the unstable display, could contribute to a broader mechanism mitigating postural threats and ensuring stable balance. Future investigations should leverage these findings to explore how posture-related responses correlate with perceptual and motor expertise, and to more clearly define these mechanisms during dynamic social interactions.
-
Dual-task paradigms, which involve performing cognitive and motor tasks simultaneously, are commonly used to study how attentional resources are allocated and managed under varying task demands. This study aimed to investigate cognitive-motor interferences (CMI) under different levels of cognitive and motor task difficulty without instruction on task prioritization. 17 healthy young adults performed an auditory oddball task with increasing cognitive and motor (walking vs. sitting) difficulty. Cognitive and motor performances, along with P3 (P3a and P3b) brainwave components, were analysed. ⋯ Our study suggests managing attentional resources to balance cognitive and motor tasks rather than linearly increasing task complexity. Viewing dual tasks as a new, integrated task is proposed, supported by previous neural network integration studies. Thus, understanding how the brain organizes tasks in response to constraints is crucial for comprehending complex task execution.