Neuroscience
-
Fluorescent carbon dots have emerged as promising nanomaterials for various applications, including bioimaging, food safety detection and drug delivery. However, their potential impact on neurological systems, especially in-vivo models, remains a critical area of investigation. This review focuses on the neurological effects of carbon dots and carbon quantum dots on zebrafish, an established vertebrate model with a conserved central nervous system. ⋯ Neurotoxicity assessments reveal both short-term and long-term effects, ranging from immediate behavioral alterations to subtle changes in neuronal morphology. The review discusses potential mechanisms underlying these effects highlights the need for standardized methodologies in assessing neurological outcomes and emphasizes the importance of ethical considerations in nanomaterial research. As the field of nanotechnology continues to advance, a comprehensive understanding of the impact of fluorescent carbon dots on neurological function in zebrafish is crucial for informing safe and sustainable applications in medicine and beyond.
-
Migraine is a complex neurological disorder with neuroinflammation playing a crucial role in its pathogenesis. This review provides an overview of the neuroinflammation mechanisms in migraine, focusing on both cellular and molecular aspects. At the cellular level, we examine the role of glial cells, including astrocytes, microglia, oligodendrocytes in the central nervous system, and Schwann cells and satellite glial cells in the peripheral nervous system. ⋯ Recent advancements, such as [11C] PBR28-targeted imaging for visualizing astrocyte activation and single-cell sequencing for exploring cellular heterogeneity, represent breakthroughs in understanding the mechanisms of neuroinflammation in migraine. By considering factors for personalized treatments, estrogen and TRPM8 emerge as promising therapeutic targets regarding sexual dimorphism. These advancements may help bridge the gap between preclinical findings and clinical applications, ultimately leading to more precise and personalized options for migraine patients.
-
Randomized Controlled Trial
Integration patterns of functional brain networks can predict the response to abdominal acupuncture in patients with major depressive disorder.
Abdominal acupuncture has definite efficacy for major depressive disorder (MDD). Our study examined how abdominal acupuncture regulates the integration within and between brain networks of MDD patients by neuroimaging and whether this functional integration can predict the efficacy. Forty-six female MDD patients were randomly divided into a fluoxetine + real acupuncture group (n = 22) and a fluoxetine + sham acupuncture group (n = 24). ⋯ Using the baseline FCs within AN and DMN or AN-DMN as characteristics, combined with support vector regression, could better predict the efficacy of acupuncture. Our study suggests that abdominal acupuncture could treat MDD by regulating the integration of the functional networks DMN, AN, SN, and CCN. The baseline FCs within the DMN and AN or between them could be used as neural markers for predicting the efficacy of abdominal acupuncture.
-
Alzheimer's disease (AD) remains a pressing global health concern, necessitating comprehensive investigations into its underlying molecular mechanisms. While the late-stage pathophysiology of this disease is well understood, it is crucial to examine the role of amyloid beta oligomers (Aβo), which form in the brain during the early stages of disease development. These toxic oligomers could affect neuronal viability and generate oxidative stress in the brain. ⋯ Our study also revealed the involvement of less-explored proteins like MYH9, CISD1, and SNRNP70, which play critical roles in cytoskeletal dynamics, mitochondrial function, and RNA splicing, respectively. These findings underscore the complex pathophysiology of AD, highlighting potential biomarkers and therapeutic targets for early intervention. The present study advances the understanding of Aβo-induced oxidative stress and neuronal damage, providing a foundation for future research into early-stage AD diagnosis and subsequent treatment strategies.
-
Cortical proprioceptive processing of intermittent, passive movements can be assessed by extracting evoked and induced electroencephalographic (EEG) responses to somatosensory stimuli. Although the existent prior research on somatosensory stimulations, it remains unknown to what extent ongoing volitional muscle activation modulates the proprioceptive cortical processing of passive ankle-joint rotations. Twenty-five healthy volunteers (28.8 ± 7 yr, 14 males) underwent a total of 100 right ankle-joint passive rotations (4° dorsiflexions, 4 ± 0.25 s inter-stimulus interval, 30°/s peak angular velocity) evoked by a movement actuator during passive condition with relaxed ankle and active condition with a constant plantarflexion torque of 5 ± 2.5 Nm. ⋯ Proprioceptive stimuli during the active condition elicited robustly ∼26 % larger evoked response and ∼38 % larger beta suppression amplitudes, but ∼42 % weaker beta rebound amplitude over the primary sensorimotor cortex than the passive condition, with no differences in terms of response latencies. These findings indicate that the active volitional motor task during naturalistic proprioceptive stimulation of the ankle joint enhances related cortical activation and reduces related cortical inhibition with respect to the passive condition. Possible factors explaining these results include mechanisms occurring at several levels of the proprioceptive processing from the peripheral muscle (i.e. mechanical, muscle spindle status, etc.) to the different central (i.e. spinal, sub-cortical and cortical) levels.