Neuroscience
-
Motor learning does not occur on a 'blank slate', but in the context of prior coordination solutions. The role of prior coordination solutions is likely critical in redundant tasks where there are multiple solutions to achieve the task goal - yet their influence on subsequent learning is currently not well understood. Here we addressed this issue by having human participants learn a redundant virtual shuffleboard task, where they held a bimanual manipulandum and made a discrete throwing motion to slide a virtual puck towards a target. ⋯ On the second day, all participants transferred to a common criterion task, which required an asymmetric solution. Results showed that: (i) the symmetry of the practiced solution affected motor variability during practice, with more asymmetric solutions showing higher exploration of the null space, (ii) when transferring to the common criterion task, participants in the symmetric group showed much higher null space exploration, and (iii) when no constraints were placed on the solution, participants tended to return to the symmetric solution regardless of the solution originally practiced. Overall, these results suggest that the stability of prior coordination solutions plays an important role in shaping learning in redundant motor tasks.
-
Alzheimer's disease (AD) remains a pressing global health concern, necessitating comprehensive investigations into its underlying molecular mechanisms. While the late-stage pathophysiology of this disease is well understood, it is crucial to examine the role of amyloid beta oligomers (Aβo), which form in the brain during the early stages of disease development. These toxic oligomers could affect neuronal viability and generate oxidative stress in the brain. ⋯ Our study also revealed the involvement of less-explored proteins like MYH9, CISD1, and SNRNP70, which play critical roles in cytoskeletal dynamics, mitochondrial function, and RNA splicing, respectively. These findings underscore the complex pathophysiology of AD, highlighting potential biomarkers and therapeutic targets for early intervention. The present study advances the understanding of Aβo-induced oxidative stress and neuronal damage, providing a foundation for future research into early-stage AD diagnosis and subsequent treatment strategies.
-
Metaphors play a crucial role in language, thinking, and communication. Emoji, as modern metaphors, carry rich meanings and significantly impact emotional expression. ⋯ The results showed that when the positive emoji were in the upper visual field, compared with the middle and lower visual field, the ability to perceive positive emotions was significantly enhanced; Conversely, when the negative emotion emoji was in the lower visual field, the perception of negative emotion was significantly enhanced compared to the middle visual field. EEG data indicate that inconsistencies between Emoji spatial positions and emotional valence lead to increased amplitudes of the Late Positive Component (LPC), revealing heightened neural activity.
-
Language comprehension requires semantic processing of individual words and their context within a sentence. Well-characterized event-related potential (ERP) components (the N400 and late positivity component (LPC/P600)) provide neuromarkers of semantic processing, and are robustly evoked when semantic errors are introduced into sentences. These measures are useful for evaluating semantic processing in clinical populations, but it is not known whether they can be evoked in more severe neurodevelopmental disorders where explicit attention to the sentence inputs cannot be objectively assessed (i.e., when sentences are passively listened to). ⋯ Statistically distinct topographic distributions during passive versus active paradigms pointed to distinct generator configurations for semantic processing as a function of attention. Covert semantic processing continues in neurotypical adolescents when explicit attention is withdrawn from sentence inputs. As such, this approach could be used to objectively investigate semantic processing in populations with communication deficits.
-
This study investigates the therapeutic effect of astrocyte-derived extracellular vesicles (EVs) in mitigating neurotoxicity-induced transcriptome changes, mitochondrial function, and base excision repair mechanisms in human brain endothelial cells (HBECs). Neurodegenerative disorders are marked by inflammatory processes impacting the blood-brain barrier (BBB) that involve its main components- HBECs and astrocytes. Astrocytes maintain homeostasis through various mechanisms, including EV release. ⋯ High-throughput RNA sequencing revealed that exposure to Na2Cr2O7 suppressed immune response genes. The addition of astrocyte-derived EVs resulted in the dysregulation of long noncoding RNAs impacting genes associated with brain development and angiogenesis. These findings reveal the positive impact of astrocytes-derived EVs in mitigating neurotoxicity and as potential therapeutic avenues for neurodegenerative diseases.