Neuroscience
-
The presence of ionotropic receptors to neurotransmitters in presynaptic structures is well documented in many synapses of the mammalian brain. However, due to technical limitations, the actual prevalence of presynaptic ionotropic receptors, as well as their potential functional roles, have remained largely uncertain. The relatively simple and regular organization of neurites in the cerebellar cortex has offered a unique opportunity to bridge this gap of knowledge, by systematically probing the presence and role of presynaptic ionotropic receptors at various synapses. ⋯ They indicate a surprisingly large prevalence of presynaptic ionotropic receptors, with many synapses displaying several such receptors, often to both neurotransmitters. These results indicate that the presence of several types of presynaptic ionotropic receptors may be the rule rather than the exception in mammalian brain synapses. In addition, we discuss the functional roles of presynaptic ionotropic receptors in the induction of various forms of cerebellar long-term synaptic plasticity, as well as the potential consequences of having multiple presynaptic ionotropic receptors in a single synapse.
-
Fluorescent carbon dots have emerged as promising nanomaterials for various applications, including bioimaging, food safety detection and drug delivery. However, their potential impact on neurological systems, especially in-vivo models, remains a critical area of investigation. This review focuses on the neurological effects of carbon dots and carbon quantum dots on zebrafish, an established vertebrate model with a conserved central nervous system. ⋯ Neurotoxicity assessments reveal both short-term and long-term effects, ranging from immediate behavioral alterations to subtle changes in neuronal morphology. The review discusses potential mechanisms underlying these effects highlights the need for standardized methodologies in assessing neurological outcomes and emphasizes the importance of ethical considerations in nanomaterial research. As the field of nanotechnology continues to advance, a comprehensive understanding of the impact of fluorescent carbon dots on neurological function in zebrafish is crucial for informing safe and sustainable applications in medicine and beyond.
-
Randomized Controlled Trial
Integration patterns of functional brain networks can predict the response to abdominal acupuncture in patients with major depressive disorder.
Abdominal acupuncture has definite efficacy for major depressive disorder (MDD). Our study examined how abdominal acupuncture regulates the integration within and between brain networks of MDD patients by neuroimaging and whether this functional integration can predict the efficacy. Forty-six female MDD patients were randomly divided into a fluoxetine + real acupuncture group (n = 22) and a fluoxetine + sham acupuncture group (n = 24). ⋯ Using the baseline FCs within AN and DMN or AN-DMN as characteristics, combined with support vector regression, could better predict the efficacy of acupuncture. Our study suggests that abdominal acupuncture could treat MDD by regulating the integration of the functional networks DMN, AN, SN, and CCN. The baseline FCs within the DMN and AN or between them could be used as neural markers for predicting the efficacy of abdominal acupuncture.
-
Suicide ideation (SI) is the major cause of death in persons with depression, whereas effective and accurate biomarkers for suicidal behavior of persons with depression are still lack. Recently, manifold studies in vivo revealed that epigenetic alterations including DNA methylation, non-coding RNA regulation, RNA editing and histone modification, were associated with depressive severity and SI, and peripheral epigenetic molecules may be potential biomarkers for suicidal risk of persons with depression. Therefore, we firstly reviewed recent epigenetic advancements in depression with suicide ideation (DSI) according to studies based on human tissue. Furthermore, we discussed the significance and potential of minimally-invasive peripheral epigenetic molecules to identify potential suicidal biomarkers for DSI, aiming to promote early identification and therapeutic evaluation of DSI.
-
Hyperphagia and subsequent obesity are important public health issues due to the associated risks of developing serious diseases. Certain stressors play a major role in the development of hyperphagia. In previous studies, we established a line of human growth hormone transgenic (TG) rats that exhibit hyperphagia and obesity from a young age. ⋯ These treatments did not affect the food intake of WT rats. Rearing TG rats under group housing prevented hyperphagia and hypercorticosteronemia. These results suggest that glucocorticoids are appetite stimulants, and that TG rats exhibit increased sensitivity to the appetite-stimulating effect of glucocorticoids.