Neuroscience
-
The presence of ionotropic receptors to neurotransmitters in presynaptic structures is well documented in many synapses of the mammalian brain. However, due to technical limitations, the actual prevalence of presynaptic ionotropic receptors, as well as their potential functional roles, have remained largely uncertain. The relatively simple and regular organization of neurites in the cerebellar cortex has offered a unique opportunity to bridge this gap of knowledge, by systematically probing the presence and role of presynaptic ionotropic receptors at various synapses. ⋯ They indicate a surprisingly large prevalence of presynaptic ionotropic receptors, with many synapses displaying several such receptors, often to both neurotransmitters. These results indicate that the presence of several types of presynaptic ionotropic receptors may be the rule rather than the exception in mammalian brain synapses. In addition, we discuss the functional roles of presynaptic ionotropic receptors in the induction of various forms of cerebellar long-term synaptic plasticity, as well as the potential consequences of having multiple presynaptic ionotropic receptors in a single synapse.
-
Suicide ideation (SI) is the major cause of death in persons with depression, whereas effective and accurate biomarkers for suicidal behavior of persons with depression are still lack. Recently, manifold studies in vivo revealed that epigenetic alterations including DNA methylation, non-coding RNA regulation, RNA editing and histone modification, were associated with depressive severity and SI, and peripheral epigenetic molecules may be potential biomarkers for suicidal risk of persons with depression. Therefore, we firstly reviewed recent epigenetic advancements in depression with suicide ideation (DSI) according to studies based on human tissue. Furthermore, we discussed the significance and potential of minimally-invasive peripheral epigenetic molecules to identify potential suicidal biomarkers for DSI, aiming to promote early identification and therapeutic evaluation of DSI.
-
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
-
This study aims to investigate whether glial cells, in particular putative astrocytes, contribute to functional distinctions between the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus. To evaluate this, we performed three different behavioral tasks (i.e., Morris water maze; MWM, Passive avoidance; PA, T-maze place preference; TPP) to determine whether the DH, IH, and VH are necessary for each task. Sensitivity of behavioral tasks was confirmed using lidocaine (2 %, 1 μl) reversible inactivation. ⋯ During the acquisition phase, FC injection into the DH or IH did not differ from the control in the number of shocks; however, during retrieval, there was a significant decrease in the latency before entering the dark chamber. The TPP test performance was impaired by FC injection in the IH. In sum, we show that glial cells, especially astrocytes in specific functional regions of the hippocampus, play distinct roles in processing aversive and rewarding experiences and contribute to the functional organization of the hippocampal longitudinal axis.
-
Auditory spatial attention detection (ASAD) aims to decipher the spatial locus of a listener's selective auditory attention from electroencephalogram (EEG) signals. However, current models may exhibit deficiencies in EEG feature extraction, leading to overfitting on small datasets or a decline in EEG discriminability. Furthermore, they often neglect topological relationships between EEG channels and, consequently, brain connectivities. ⋯ EEG electrodes over the frontal cortex are most important for ASAD tasks, followed by those over the temporal lobe. Additionally, the proposed model performs well even on small datasets. This study contributes to a deeper understanding of the neural encoding related to human hearing and attention, with potential applications in neuro-steered hearing devices.