Neuroscience
-
The gut microbiota has been posited as a target for the treatment of major depressive disorder. Herein, we investigated the effect of the hydroethanolic leaf extract of Mallotus oppositifolius (MOE) on the gut microbiota of mice and how this contributes to its known antidepressant-like effect. A 6-week chronic unpredictable mild stress (CUMS) procedure was employed in 7 groups of mice to induce depression. ⋯ MOE reversed CUMS-induced reduction of 5-HT concentration in PFC and hippocampus. The behavioral effects of MOE were associated with shifts in the gut microbiota of CUMS-exposed mice. The study has provided seminal evidence that MOE ameliorates CUMS-induced depressive symptoms by modulating gut microbiota and increasing brain 5-HT levels.
-
Fentanyl, a potent analgesic and addictive substance, significantly impacts sleep-wakefulness (S-W). Acutely, it promotes wake, whereas chronic abuse leads to severe sleep disruptions, including insomnia, which contributes to opioid use disorders (OUD), a chronic brain disease characterized by compulsive opioid use and harmful consequences. Although the critical association between sleep disruptions and fentanyl addiction is acknowledged, the precise mechanisms through which fentanyl influences sleep remain elusive. ⋯ We found that systemic administration of fentanyl significantly increased wakefulness during the first 6 h of the dark which was followed by a significant increase in NREM and REM sleep during the second 6 h of the dark period. D2-receptor blockade significantly reduced this effect as evidenced by a significant reduction in fentanyl-induced wakefulness during first 6 h of dark period and sleep rebound during the second 6 h. Our findings suggest that D2 receptors in the NAcC plays a vital role in mediating the fentanyl-induced changes in S-W.
-
Noise-induced hearing loss (NIHL) studies have focused on the lemniscal auditory pathway, but little is known about how NIHL impacts different cortical regions. Here we compared response recovery trajectories in the auditory and frontal cortices (AC, FC) of mice following NIHL. We recorded EEG responses from awake mice (male n = 15, female n = 14) before and following NIHL (longitudinal design) to quantify event related potentials and gap-in-noise temporal processing. ⋯ The AC showed full recovery of ITPC over 45-days. Despite ERP amplitude recovery, the FC does not show recovery of ASSR ITPC. These results indicate post-NIHL plasticity with similar response amplitude recovery across AC and FC, but cortical region-specific trajectories in temporal processing recovery.
-
Snf7-3 is a crucial component of the endosomal sorting complexes required for transport (ESCRT) pathway, playing a vital role in endolysosomal functions. To elucidate the role of Snf7-3 in vivo, we developed conventional-like and conditional Snf7-3 knockout (KO) mouse models using a "Knockout-first" strategy. Conventional-like Snf7-3 KO mice showed significantly reduced Snf7-3 mRNA expression, and older mice (25-40 weeks) exhibited impaired social recognition and increased miniature excitatory postsynaptic currents (mEPSCs). ⋯ In addition, enhanced dendritic complexity was observed in the medial prefrontal cortex of these mice, indicating early synaptic disturbances. Our findings underscore the critical role of Snf7-3 in maintaining normal cognitive functions and social behaviors. The observed synaptic and behavioral deficits in both conventional-like and conditional KO mice highlight the importance of Snf7-3 in specific neuronal populations, suggesting that early synaptic changes could precede more pronounced cognitive impairments.
-
Mild traumatic brain injury (mTBI) is known to result in chronic somatic, cognitive, and emotional symptoms. Depression is commonly reported among individuals suffering from persistent concussion symptoms; however, the underlying mechanisms are not understood. The glutamatergic system has recently been linked with mTBI and depression due to reports of similar changes in expression of glutamatergic proteins. ⋯ Linear regression was performed to evaluate relationships between behavioral and molecular variables; the results suggested that injury affects these relationships in a region-dependent manner. Together, these results suggest that the development of chronic depression-like behavior was associated with changes in glutamatergic protein expression. Deeper investigations into how injury influences glutamatergic synaptic protein expression are needed, as this has the potential to affect circuit-level neurotransmission that drives depression-like behavior following mTBI.