Neuroscience
-
The aim of this study was to assess the potential causal relationship between neuroticism and 12 neuroticism items with intracranial aneurysms (IAs) and aneurysmal subarachnoid hemorrhage (aSAH) using a two-sample Mendelian randomization (MR) approach. ⋯ Our Mendelian randomization analysis demonstrated genetic causality between neuroticism and neuroticism items with intracranial aneurysms, aneurysmal subarachnoid hemorrhage, and unruptured intracranial aneurysms, and further studies are needed to confirm these results and explore potential mechanisms of action.
-
Major depressive disorder (MDD) is a leading global cause of disability, being more prevalent in females, possibly due to molecular and neuronal pathway differences between females and males. However, the connection between transcriptional changes and MDD remains unclear. ⋯ Females showed notable RNA splicing and export process disruptions in the orbitofrontal cortex, alongside altered DDX39B gene expression in five of the six brain regions in both sexes. Our findings suggest that disruptions in RNA processing pathways may play a vital role in MDD.
-
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease worldwide, which worsens with advancing age. It is a common movement disorder and is often associated with several vascular diseases with decreased stroke frequency. Circulating platelets substantially regulate vascular complications, including stroke, and share striking similarities with PD neurons. ⋯ Phase-contrast and confocal microscopic studies further verified the results from the above experiments. Our findings showed that 6-OHDA treatment significantly inhibited thrombin (a platelet agonist)-induced functions, including adhesion, activation, aggregation, secretion, and clot retraction in human-washed platelets. In summary, this research provides pioneering evidence that 6-OHDA induces abnormal platelet functions, shedding light on the previously unexplored processes by which 6-OHDA affects platelet activity.
-
Alzheimer's disease (AD) is the most common form of neurodegeneration which currently has no effective treatment. Ferroptosis is a new style of programmed cell death and is widely implicated in the pathogenesis and progression of AD. Decursin has been shown widely neuroprotective effects but poorly understood about the underlying mechanisms between decursin and ferroptosis in AD. ⋯ Taken together, our data for the first time suggest that decursin could ameliorate neurotoxicity induced by glutamate by attenuating ferroptosis via alleviating cellular iron levels by up-regulating FTH1 expression which is attributing to its promotion of Nrf2 translocation into the nucleus in SH-SY5Y neuroblastoma cells. Hence, decursin might be a novel and promising therapeutic option for AD. In addition, our study also provided some new clues to potential target for the intervention and therapy of AD.
-
Olfactory dysfunction is an early sign of such neurodegenerative diseases as Parkinson's (PD) and Alzheimer's (AD), and is often present in Mild Cognitive Impairment (MCI), a precursor of AD. Understanding neuro-temporal relationships, i.e., functional connectivity, between olfactory eloquent structures in such disorders, could shed light on their basic pathophysiology. To this end, we employed region-based analyses using resting-state functional magnetic resonance imaging (rs-fMRI) obtained from cognitively normal (CN), MCI, and PD patients with cognitive impairment (PD-CogImp). ⋯ Regardless of study group, males showed significantly higher connectivity than females in connections involving the orbitofrontal cortex. The logistic regression model trained using the top discriminatory features revealed that caudate was the most involved olfaction-related brain structure (accuracy = 0.88, Area under the Receiver operator characteristic curve of 0.90). In aggregate, our study demonstrates that resting functional connectivity among olfactory eloquent structures has potential value in better understanding the pathophysiology of several neurodegenerative diseases.