Neuroscience
-
Parkinson's disease (PD) is the second most common neurodegenerative disorder whose etiology remains unknown. The immune system has been implicated in hallmarks of PD including aggregation of α-synuclein and death of dopaminergic neurons in the substantia nigra. As a core regulator of immune response and inflammation, liver X receptors (LXRs) have been shown to have protective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. ⋯ In addition, MPTP did not lead to dopaminergic neuron death in the striatum and substantia nigra in LXRα-/- mice, the basal GFAP protein level, and pro-inflammatory cytokines were elevated in LXRα-/- mice. Lastly, the microglia activation and astrogliosis caused by MPTP intoxication we found in WT mice were abolished in LXRα-/- mice. To sum up, we conclude that LXRα is a critical regulator in MPTP intoxication and may play a unique role in astrogliosis seen in the neuroinflammation of PD.
-
Snf7-3 is a crucial component of the endosomal sorting complexes required for transport (ESCRT) pathway, playing a vital role in endolysosomal functions. To elucidate the role of Snf7-3 in vivo, we developed conventional-like and conditional Snf7-3 knockout (KO) mouse models using a "Knockout-first" strategy. Conventional-like Snf7-3 KO mice showed significantly reduced Snf7-3 mRNA expression, and older mice (25-40 weeks) exhibited impaired social recognition and increased miniature excitatory postsynaptic currents (mEPSCs). ⋯ In addition, enhanced dendritic complexity was observed in the medial prefrontal cortex of these mice, indicating early synaptic disturbances. Our findings underscore the critical role of Snf7-3 in maintaining normal cognitive functions and social behaviors. The observed synaptic and behavioral deficits in both conventional-like and conditional KO mice highlight the importance of Snf7-3 in specific neuronal populations, suggesting that early synaptic changes could precede more pronounced cognitive impairments.
-
Over the years, the neuroprotective potential of bone marrow mesenchymal stem cells (BMSCs) in acute ischemic stroke has attracted significant attention. However, BMSCs face challenges like short metabolic cycles and low survival rates post-transplant. Polypyrimidine tract-binding protein 1 (PTBP1) is an immunomodulatory RNA-binding protein that regulates the cell cycle and increases cell viability. ⋯ In addition, PTBP1KD-BMSCs transplantation into middle cerebral artery occlusion/reperfusion (MCAO/R) rats reduced cerebral infarction volume and improved neurological function. Immunofluorescence analysis confirmed the upregulation of GSS expression in neurons of the ischemic cortex, while immunohistochemistry indicated a downregulation of p-P38. These result suggest that PTBP1KD-BMSCs can alleviate neuronal IRI by reducing oxidative stress, inhibiting ferroptosis, and modulating the MAPK pathway, providing a theoretical basis for potential treatment strategies for cerebral IRI.
-
Hyperphagia and subsequent obesity are important public health issues due to the associated risks of developing serious diseases. Certain stressors play a major role in the development of hyperphagia. In previous studies, we established a line of human growth hormone transgenic (TG) rats that exhibit hyperphagia and obesity from a young age. ⋯ These treatments did not affect the food intake of WT rats. Rearing TG rats under group housing prevented hyperphagia and hypercorticosteronemia. These results suggest that glucocorticoids are appetite stimulants, and that TG rats exhibit increased sensitivity to the appetite-stimulating effect of glucocorticoids.
-
Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. ⋯ These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.