Neuroscience
-
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. ⋯ Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
-
Determining the neural bases of basic linguistic composition is central to research on the cognitive neuroscience of language. The left anterior temporal lobe (LATL) is widely reported during linguistic composition of visual stimuli in magnetoencephalography (MEG) studies. However, this effect is less reported during the linguistic composition of auditory stimuli in intracranial electroencephalography (iEEG) studies. ⋯ Participants were asked to read minimal two-word phrases in the composition condition and read words preceded by pound signs in the noncomposition condition. The results showed that high-gamma power in the LATL was higher in the composition condition compared to the noncomposition condition. These results provide more substantial evidence for the role of LATL in basic linguistic composition (at least in visual modality) and highlight the potential role of stimuli modality (visual vs. auditory) in the phrasal composition effect in LATL.
-
We used the framework of the uncontrolled manifold (UCM) hypothesis to explore the origin of inter-trial variance within the UCM, which by definition does not affect the salient performance variable, during accurate two-finger force production. Specifically, we tested several hypotheses on two main sources of variance within the UCM, variability in the sharing patterns between the fingers across trials and covaried variability in finger forces within individual trials. We also explored effects on unintentional changes in the structure of variance during preparation for a quick force change and during force drift without visual feedback. ⋯ Changing the initial magnitude of variance along the UCM was reflected in its magnitude during anticipatory synergy adjustments prior to the force pulse and following the unintentional force drift. We interpret the results assuming a hierarchical control with two commands, reciprocal and coactivation. The results support the scheme with two contributing factors to variance along the UCM, likely associated with feed-forward and feedback mechanisms.
-
Review
Virtual reality modulating dynamics of neuroplasticity: Innovations in neuro-motor rehabilitation.
Virtual reality (VR) technology has emerged as a ground-breaking tool in neuroscience, revolutionizing our understanding of neuroplasticity and its implications for neurological rehabilitation. By immersing individuals in simulated environments, VR induces profound neurobiological transformations, affecting neuronal connectivity, sensory feedback mechanisms, motor learning processes, and cognitive functions. These changes highlight the dynamic interplay between molecular events, synaptic adaptations, and neural reorganization, emphasizing the potential of VR as a therapeutic intervention in various neurological disorders. ⋯ Integrating molecular neuroscience with VR technology allows for a deeper understanding of the molecular mechanisms underlying neuroplasticity, opening doors to personalized interventions and precise treatment strategies for individuals with neurological impairments. Moreover, the review emphasizes the ethical considerations and challenges that come with implementing VR-based interventions in clinical practice, stressing the importance of data privacy, informed consent, and collaborative interdisciplinary efforts. By leveraging advanced molecular imaging techniques, VR-based research methodologies, and computational modelling, the review envisions a future where VR technology plays a central role in revolutionizing neuroscience research and clinical neurorehabilitation, ultimately providing tailored and impactful solutions for individuals facing neurological challenges.
-
Apelin, an endogenous ligand of G protein-coupled receptor APJ, is widely distributed in the central nervous system (CNS). It can be divided into such subtypes as Apelin-13, Apelin-17, and Apelin-36 as they have different amino acid structures. ⋯ As an adipokine, Apelin has been found to play a crucial role in cardiovascular disease development. In this paper, we reviewed the effects and mechanisms of Apelin in treating CNS diseases, such as neurotrauma, stroke, spinal cord injury, primary tumors, neurodegenerative diseases, psychiatric diseases, epilepsy, and pain.