Neuroscience
-
After spinal cord injury (SCI), the accumulation of myelin debris can serve as proinflammatory agents, hindering axon regrowth and exacerbating damage. While astrocytes have been implicated in the phagocytosis of myelin debris, the impact of this process on the phenotypic transformation of astrocytes and their characteristics following SCI in rats is not well understood. Here, we demonstrated that the conditioned medium of myelin debris can trigger apoptosis in rat primary astrocytes in vitro. ⋯ This study illustrates the distribution patterns of astrocyte subtypes and the potential interplay between astrocytes and myelin debris after SCI in rats. We emphasize that myelin debris can induce astrocyte apoptosis in vitro and promote the transformation of astrocytes into A1 astrocytes in vivo. These two classification methods are not mutually exclusive, but rather complementary.
-
RNA-binding motif protein 3 (RBM3), as a cold-inducible protein, exhibits neuroprotective function in brain disorders. This study was conducted to investigate the effects of RBM3 on acute brain injury (ABI) and its underlying mechanism. The cerebral injury (CI) rat model and oxygen-glucose deprivation (OGD) cell model were established. ⋯ RBM3 interacted with GAS6 to activate the Nrf2 signaling pathway, thus playing neuroprotection on ABI. Besides, the results of RBM3 treatment were similar to those of mild hypothermia treatment. In summary, RBM3 exerted neuroprotection and ameliorated inflammatory levels and oxidative stress by stabilizing GAS6 mRNA through the Nrf2 signaling pathway, suggesting that RBM3 might be a potential therapeutic candidate for treating ABI.
-
Ghrelin, a hormone secreted by the stomach, binds to the growth hormone secretagogue receptor (GHSR) in various brain regions to produce a number of behavioral effects that include increased feeding motivation. During social defeat stress, ghrelin levels rise in correlation with increased feeding and potentially play a role in attenuating the anxiogenic effects of social defeat. One region implicated in the feeding effects of ghrelin is the ventral tegmental area (VTA), a region implicated in reward seeking behaviors, and linked to social defeat in mice. ⋯ Vehicle-treated mice increased their caloric intake during social defeat, but JMV2959-infusions attenuated feeding responses and increased anxiety-like behaviors. The data suggest that GHSR signalling in the VTA is critical for the increases in appetite observed during chronic social defeat stress. Furthermore, these data support the idea that GHSR signaling in the VTA may also have anxiolytic effects, and blocking GHSR in this region may result in an anxiety-like phenotype.
-
Task switching refers to a set of cognitive processes involved in shifting attention from one task to another. In recent years, researchers have applied transcranial direct current stimulation (tDCS) to investigate the causal relationship between the parietal cortex and task switching. However, results from available studies are highly inconsistent. ⋯ For unpredictable task switching, under the sham condition, the P2 peak was significantly larger for switch trials compared with repeat trials, whereas this difference was not observed under the RA condition. These results indicated the causal relationship between the right parietal cortex and exogenous adjustment processes involved in task switching. Moreover, anodal tDCS over the right parietal cortex may lead to the manifestation of gender differences.
-
An exceptional ability to accurately anticipate an opponent's action is paramount for competitive athletes and highlights their experiential mastery. Despite conventional associations of action observation with specific brain regions, neuroimaging discrepancies persist. To explore the brain regions and neural mechanisms undergirding action anticipation, we compared distinct brain activation patterns involved in table tennis serve anticipation of expert table tennis athletes vs. non-experts by using both univariate analysis and multivoxel pattern analysis (MVPA). ⋯ MVPA results indicated moderate accuracy (90.48%) for differentiating experts from non-experts. Brain regions contributing most to the differentiation included the left cerebellum, the vermis, the right middle temporal pole, the inferior parietal cortex, the bilateral paracentral lobule, and the left supplementary motor area. The findings suggest that brain regions associated with cognitive conflict monitoring and motor cognition contribute to the action anticipation ability of expert table tennis players.