Neuroscience
-
Tauopathies are a group of neurodegenerative diseases among which are many of the most prevalent and with higher incidence worldwide, such as Alzheimer's disease (AD). According to the World Health Organization, this set of diseases will continue to increase their incidence, affecting millions of people by 2050. All of them are characterized by aberrant aggregation of tau protein in neurons and glia that are distributed in different brain regions according to their susceptibility. ⋯ Despite this, it has not been emphasized how the glial inclusions of tau in this cell type directly affect this and many other essential functions, whose alterations have been related to the development of tauopathies. In this way, this review shows how tau inclusions in glia influence the synaptic dysfunctions that result in the cognitive symptoms characteristic of tauopathies. Thus, the mechanisms affected by inclusions in neurons, astrocytes, and oligodendrocytes are unraveled.
-
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. ⋯ Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
-
Here we revisit tau protein aggregation at primary, secondary, tertiary and quaternary structures. In addition, the presence of non-aggregated tau protein, which has been recently discovered, is also commented on.
-
Review
Macromolecular Structures and Proteins Interacting with the Microtubule Associated Tau Protein.
It is well established that neurodegenerative diseases known as tauopathies are characterized by the presence of filamentous forms of phosphorylated tau protein inside neurons. However, the causal relationship between the initial symptoms of a particular disease and the molecular events affecting tau and leading to the appearance of tangles of filamentous forms of this protein remains unknown. Even the main function (or functions) of tau inside neurons is debatable and controversial. ⋯ I review here some of the most studied interactions of tau with different macromolecules and proteins, which can be classified according to the structural o functional unit within which the interaction works: Microtubule, Nuclear localization and DNA, Synaptic activity, RNA metabolism, Fats transport, Proteostasis, Amyloid Cascade Hypothesis, Mitochondria and Phosphorylation. Although this seems to be a broad spectrum of tau functions, interactome studies of tau reveal hundreds of plausible partners of tau, suggesting that it engages in an extensive network of interconnected regulatory interactions by means of its high capability to interact with all kinds of proteins and complex structures, combined with its vast number of post-translational modifications. I include also some thermodynamic data concerning the interaction of tau with some partners.
-
In several forms of dementia, such as Alzheimer's disease, the cytoskeleton-associated protein tau undergoes proteolysis, giving rise to fragments that have a toxic impact on neuronal homeostasis. How these fragments interact with cellular structures, in particular with the cytoskeleton, is currently incompletely understood. Here, we developed a method, derived from a Tobacco Etch Virus (TEV) protease system, to induce controlled cleavage of tau at specific sites. ⋯ These distinct localizations were confirmed by expressing each separate fragment in cells. Some cleavages - in particular cleavages at amino-acid positions 124 or 256 - displayed a certain level of cellular toxicity, with an unusual relocalization of the N-terminal fragments to the nucleus. Based on the data presented here, inducible cleavage of tau by the TEV protease appears to be a valuable tool to reproduce tau fragmentation in cells and study the resulting consequences on cell physiology.