Neuroscience
-
Collective self-esteem (CSE) is an important personality variable, defined as self-worth derived from membership in social groups. A study explored the neural basis of CSE using a task-based functional magnetic resonance imaging (fMRI) paradigm; however, task-independent neural basis of CSE remains to be explored, and whether the CSE neural basis of resting-state fMRI is consistent with that of task-based fMRI is unclear. ⋯ Our findings revealed CSE neural basis in the whole-brain RSFC network, and established the concordance between leverage centrality and the activation pattern (evoked during collective self-worth task) of the identified regions in terms of representing CSE.
-
Social media has revolutionized science communication, allowing for rapid dissemination of science-related content to the public. In recent years, video platforms like TikTok and Instagram have implemented recommendation algorithms that track users' interests andsuggest personalized videos. As a result, these apps have become powerful tools for public messaging, facilitating access to audiences that are naturally curious about science. ⋯ Finally, I present survey data demonstrating that 84% of users report feeling more trustful of science & scientists after following this account. Although the generalizability of these findings is limited, the results offer insights into the factors that drive video performance on TikTok and how users engage with scientific content on social media. These findings may help science communicators more effectively reach wider audiences and promote science literacy in new and innovative ways.
-
Mitophagy plays a significant role in modulating the activation of pyrin domain-containing protein 3 (NLRP3) inflammasome, which is a major contributor to the inflammatory response that exacerbates cerebral ischemia-reperfusion (I/R) injury. Despite this, the transcriptional regulation mechanism that governs mitophagy remains unclear. This study sought to explore the potential mechanism of Forkhead Box P1 (Foxp1) and its impact on cerebral I/R injury. ⋯ Furthermore, we confirmed through chromatin immunoprecipitation (ChIP) and luciferase reporter assays that FUNDC1 is a direct target gene of Foxp1 downstream. Furthermore, the knockdown of FUNDC1 reversed the increased activation of mitophagy and suppressed NLRP3 inflammasome activation induced by Foxp1 overexpression. Collectively, our findings suggest that Foxp1 inhibits NLRP3 inflammasome activation through FUNDC1 to reduce cerebral I/R injury.
-
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC) are considered a major site of leptin action. Due to increasing evidence that POMC neurons are highly heterogeneous and indications that the conventional molecular tools to study their functions have important limitations, a reassessment of leptin's effects on definitive POMC neurons is needed. POMC neurons are also expressed in the retrochiasmatic area (RCA), where their function is poorly understood. ⋯ We confirmed and extended the model by which leptin depolarizes POMC neurons, in both the ARC and the RCA. Furthermore, we characterized the electrophysiological properties of an underappreciated subpopulation representing ∼10% of hypothalamic POMC neurons that are inhibited by leptin. We also provide evidence that sex does not appear to be a major determinant of basal properties and leptin responsiveness of POMC neurons, but that females are overall less responsive to leptin compared to males.
-
Long-term motor skill learning has been shown to impact the functional plasticity of the brain. Athletes, as a unique population, exhibit remarkable adaptive changes in the static properties of their brain networks. However, studying the differences between expert and novice athletes using a dynamic brain network framework can provide a fresh perspective on how motor skill learning affects the functional organization of the brain. ⋯ Furthermore, classification analyses demonstrated the critical role played by the visual network in the classification process. In conclusion, our study provides new insights into the dynamic properties of brain networks in expert and novice soccer players, and suggests that reduced integration and increased segregation in the visual network may be neuroimaging marker that distinguish expert soccer players from novices. Our findings may have implications for the training and development of athletes and advance our understanding of how motor skill learning affects brain functional organization.