Neuroscience
-
Morphine has a strong analgesic effect and is suitable for various types of pain, so it is widely used. But long-term usage of morphine can lead to drug tolerance, which limits its clinical application. The complex mechanisms underlying the development of morphine analgesia into tolerance involve multiple nuclei in the brain. ⋯ Existing studies show that dopamine receptors and μ-opioid receptors participate in morphine tolerance through the altered activities of dopaminergic and/or non-dopaminergic neurons in the VTA. Several neural circuits related to the VTA are also involved in the regulation of morphine analgesia and the development of drug tolerance. Reviewing specific cellular and molecular targets and related neural circuits may provide novel precautionary strategies for morphine tolerance.
-
This study investigated strategies based on the reconsolidation process to promote the strengthening effect of human motor memory. The aim of this study was to evaluate the influence of reactivating the memory of a newly acquired motor skill and performing interventions during its reconsolidation process on motor performance. Sixty healthy participants learned a new Sequential Visual Isometric Pinch Task - SVIPT during the first experimental session. ⋯ All groups performed the third session to retest the learned motor skill, 24 h after session 1. The results showed that using training with moderate task variability during memory reconsolidation provides greater motor skill performance gain when compared to repetitive training of the same learned task. Furthermore, performing a session exclusively dedicated to reactivation with the practice of the originally learned task was not a determining condition for recent motor memory reactivation, but rather the induction of prediction error during the reactivation.
-
Age modifies walking balance and neuromuscular control. Cognitive and postural constraints can increase walking balance difficulty and magnify age-related differences. However, how such challenges affect neuromuscular control remains unknown. ⋯ Arm-crossing also reduced walking balance mostly in OA, but step speed decreased mainly in YA, in whom the margin of stability increased. Arm-crossing reduced the complexity of synergies. Age, cognitive task, and arm position affect differently muscle synergy recruitment but have similar effects on walking balance.
-
Motor imagery (MI) is a brain-computer interface (BCI) technique in which specific brain regions are activated when people imagine their limbs (or muscles) moving, even without actual movement. The technology converts electroencephalogram (EEG) signals generated by the brain into computer-readable commands by measuring neural activity. Classification of motor imagery is one of the tasks in BCI. ⋯ Finally, the processed data is input into the encoder layer of the Transformer for a self-attention calculation to obtain the classification results. Our approach was tested on the well-known MI datasets BCI Competition IV 2a and 2b, and the results show that the 2a dataset has a global average classification accuracy of 83.3% and a kappa value of 0.78. Experimental results show that the proposed method outperforms most of the existing methods.
-
Spinal cord injury (SCI) following trauma is a devastating neurological event that can lead to loss of sensory and motor functions. However, the most effective measures to prevent the spread of damage are treatment measures in the early stages. Currently, we investigated the combined effects of hyperbaric oxygen (HBO) along with epigallocatechin-3-gallate (EGCG) in the recovery of SCI in rats. ⋯ The finding indicated that the stereological parameters, antioxidant factors (CAT, GSH, and SOD), IL-10 gene expression levels and neurological functions were considerably increased in the treatment groups in comparison with control group, and these changes were more obvious in the HBO + EGCG group (P < 0.05). On the other hand, we observed that the density of apoptotic cells and gliosis, the biochemical levels of MDA and the expression levels of inflammatory genes (TNF-α and IL-1β) in the treatment groups, especially the HBO + EGCG group, were considerably reduced in comparison with control group (P < 0.05). We conclude that co-administration of HBO and EGCG has a synergistic neuroprotective effects in animals undergoing SCI.