Neuroscience
-
The inversion of a picture of a face hampers the accuracy and speed at which observers can perceptually process it. Event-related potentials and pupillary responses, successfully used as biomarkers of face inversion in the past, suggest that the perception of visual features, that are organized in an unfamiliar manner, recruits demanding additional processes. However, it remains unclear whether such inversion effects generalize beyond face stimuli and whether indeed more mental effort is needed to process inverted images. ⋯ We simultaneously measured responses of 47 human participants to presentations of images showing upright or inverted natural scenes. For inverted scenes, we observed relatively stronger occipito-temporo-parietal N1 peak amplitudes and larger pupil dilations (on top of an initial orienting response) than for upright scenes. This study revealed neural and physiological markers of natural scene inversion that are in line with inversion effects of other stimulus types and demonstrates the robustness and generalizability of the phenomenon that unfamiliar configurations of visual content require increased processing effort.
-
β-hydroxybutyrate (BHB) is one of main component of ketone body, which plays an important protective role in various tissues and organs. Whereas, its exact regulatory roles and mechanisms in Parkinson's disease (PD) have not been full elucidated. In this study, SN4741 cells and C57BL/6 mice were treated with 1-methyl-4-phenylpyridinium ion (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish the PD model in vitro and in vivo. ⋯ Mechanistically, Zinc finger protein 36 (ZFP36) was a target of BHB, and its depletion could reverse the anti-oxidative stress and anti-ferroptosis roles of BHB. Moreover, ZFP36 could directly bound to acyl-CoA synthetase long-chain family member 4 (ACSL4) mRNA to decay its expression, thus negatively modulating ACSL4-mediated oxidative stress and ferroptosis. Summary, BHB alleviated oxidative stress and ferroptosis of dopaminergic neurons in PD via modulating ZFP36/ACSL4 axis, which provided some new understanding for PD prevention and treatment.
-
A growth mindset refers to an individual's beliefs about the malleable nature of intelligence. It plays an important role in motivation and achievement. However, few studies have examined the brain mechanisms involved in the growth mindset. ⋯ Whole-brain correlation analyses showed a positive relationship between growth mindset scores and regional GMV of the medial orbitofrontal cortex (mOFC) after controlling for age, sex, and total intracranial volume. This result was robust after controlling for intelligence quotient. The mOFC was primarily related to reward processing, supporting the social-cognitive theory of motivation on growth mindset.
-
Acceleration/deceleration forces are a common component of various causes of mild traumatic brain injury (mTBI) and result in strain and shear forces on brain tissue. A small quantifiable volume dubbed the compensatory reserve volume (CRV) permits energy transmission to brain tissue during acceleration/deceleration events. The CRV is principally regulated by cerebral blood flow (CBF) and CBF is primarily determined by the concentration of inspired carbon dioxide (CO2). ⋯ Ribonucleic acid (RNA) sequencing conducted four hpi revealed that CO2 exposure prevented mTBI-induced transcriptional alterations of several targets related to oxidative stress, immune, and inflammatory signaling. Quantitative real-time PCR analysis confirmed the prevention of mTBI-induced increases in mitogen-activated protein kinase kinase kinase 6 and metallothionein-2. These initial proof of concept studies reveal that increases in inspired CO2 mitigate the detrimental contributions of acceleration/deceleration events in mTBI and may feasibly be translated in the future to humans using a medical device seeking to prevent mTBI among high-risk groups.
-
Parkinson's disease (PD) is one of the leading causes of neurological disability, and its prevalence is expected to increase rapidly in the following few decades. PD diagnosis heavily depends on clinical features using the patient's symptoms. Therefore, an accurate, robust, and non-invasive bio-marker is of critical clinical importance for PD. ⋯ The proposed methodology is applied to three open fMRI databases for demonstration and validation. The PD diagnosis accuracy can reach 96.4% when the proposed methodology is used. Thus, rs-fMRI and topological machine learning provide a quantifiable and verifiable bio-marker for future PD early detection and treatment evaluation.