Neuroscience
-
Advances in single cell sequencing have enabled the identification of a large number of genes, expressed in many different cell types, and across a variety of model organisms. In particular, the nervous system harbors an immense number of interacting cell types, which are poorly characterized. Future loss- and gain-of-function experiments will be essential in determining how novel genes play critical roles in diverse cellular, as well as evolutionarily adapted, contexts. ⋯ Furthermore, we report additional technical advances that enable temporal control of knock-down or gain-of-function analysis. We applied this to visualize and manipulate labeled neurons, astrocytes and other glial cells in the central nervous system (CNS) of mouse, rat and ferret. We propose that misPiggy will be a valuable tool for rapid, flexible and cost-effective screening of gene function across a variety of animal models.
-
Synapse formation between neurons is critical for proper circuit and brain function. Prior to activity-dependent refinement of connections between neurons, activity-independent cues regulate the contact and recognition of potential synaptic partners. Formation of a synapse results in molecular recognition events that initiate the process of synaptogenesis. ⋯ Of these families, the EphBs and ephrin-Bs are required during each phase of synaptic development from target selection, recruitment of synaptic proteins, and formation of spines to regulation of synaptic plasticity at glutamatergic spine synapses in the mature brain. These roles also place EphBs and ephrin-Bs as important regulators of human neurological diseases. This review will focus on the role of EphBs and ephrin-Bs at synapses.
-
Sensory information in the brain is organized into spatial representations, including retinotopic, somatotopic, and tonotopic maps, as well as ocular dominance columns. The spatial representation of sensory inputs is thought to be a fundamental organizational principle that is important for information processing. Topographic maps are plastic throughout an animal's life, reflecting changes in development and aging of brain circuitry, changes in the periphery and sensory input, and changes in circuitry, for instance in response to experience and learning. Here, we review mechanisms underlying the role of activity in the development, stability and plasticity of topographic maps, focusing on recent work suggesting that the spatial information in the visual field, and the resulting spatiotemporal patterns of activity, provide instructive cues that organize visual projections.
-
Investigating axonal behaviors while neurons are connecting with each other has been a challenge since the early studies on nervous system development. While molecule-driven axon pathfinding has been theorized by observing neurons at different developmental stages in vivo, direct observation and measurements of axon guidance behaviors required the invention of in vitro systems enabling to test the impact of molecules or cellular extracts on axons growing in vitro. With time, the development of novel in vivo approaches has confirmed the mechanisms highlighted in culture and has led in vitro systems to be adapted for cellular processes that are still inaccessible in intact organisms. We here review the evolution of these in vitro assays, which started with crucial contributions from the Bonhoeffer lab.
-
Friedrich Bonhoeffer made seminal contributions to the study of axon guidance in the developing nervous system. His discoveries of key cellular and molecular mechanisms that dictate wiring specificity laid the foundation for countless investigators who have followed in his footsteps. Perhaps his most significant contribution was the cloning and characterization of members of the conserved ephrin family of repulsive axon guidance cues. ⋯ Specifically, we focus our discussion on the post-translational regulation of two major families of repulsive axon guidance factors: ephrin ligands and their Eph receptors, and slit ligands and their Roundabout (Robo) receptors. We will give special emphasis to the ways in which regulated endocytic trafficking events allow navigating axons to adjust their responses to repellant signals and how these trafficking events are intimately related to receptor signaling. By highlighting parallels and differences between the regulation of these two important repulsive axon guidance pathways, we hope to identify key outstanding questions for future investigation.