Neuroscience
-
Defective mitophagy and mitochondrial dysfunction have been linked to aging and Alzheimer's disease (AD). β2-Adrenergic receptor (ADRB2) is critical for mitochondrial and cognitive function. However, researchers have not clearly determined whether ADRB2 activation ameliorates defective mitophagy and cognitive deficits in individuals with AD. Here, we observed that the activation of ADRB2 by clenbuterol (Clen, ADRB2 agonist, 2 mg/kg/day) ameliorated amyloid-β-induced (Aβ1-42 bilateral intracerebral infusion, 2 μl, 5 μg/μl) memory deficits. ⋯ Finally, we established that Clen improved mitophagy and attenuated mitochondrial dysfunction, and tau pathology in mice by activating the ADRB2/Akt/PINK1 signaling pathway. Conversely, the inhibition of ADRB2 by propranolol (βAR antagonist, 10 μM) blocked the Clen-mediated improvements in pathological changes in N2a cells. The results from the present study indicate that ADRB2 activation may be a therapeutic strategy for AD.
-
Human herpes virus-6B (HHV-6B) was suggested as an important etiologic factor of mesial temporal lobe epilepsy, while the mechanism is still unknown. Here, we aimed to analyze antigens representing latent, early and late HHV-6B infection and the association with inflammatory cytokines in brain tissue and cerebral spinal fluid (CSF) from MTLE patients with HHV-6B-positivity. ⋯ Our finding suggests HHV-6B is a common etiologic agent of MTLE. Different virus life cycle may play an important modifying role in inflammatory biology that warrants further investigation. Though virus DNA is difficult detected in CSF, up-regulation of IL-1a and IL-7 in CSF indicates the two cytokines may be taken as indirect biomarker of HHV-6B infection.
-
Review
The beneficial role of SIRT1 in preventive or therapeutic options of Neurodegenerative Diseases.
Sirtuin 1 (SIRT1) is an NAD+ dependent deacetylase that modify the gene expression through histone deacetylation. SIRT1 plays a crucial role in regulating a wide range of physiological processes by adjustment multiple mechanisms through the deacetylation of multiple substrates. ⋯ Its basic pathogenesis is filamentous tangles and amyloid deposits, such as Amyloid-β (Aβ), tau protein, α-synuclein, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). This summarizes introduces the structure and function of SIRT1, and then analyzes the protective effects of SIRT1 on neurological diseases by regulating circadian rhythm, aging, oxidative stress, mitochondrial dysfunction and neuroinflammation related pathways.
-
The mismatch negativity (MMN) component of the human event-related potential (ERP) is frequently interpreted as a sensory prediction-error signal. However, there is ambiguity concerning the neurophysiology underlying hypothetical prediction and prediction-error signalling components, and whether these can be dissociated from overlapping obligatory components of the ERP that are sensitive to physical properties of sounds. In the present study, a hierarchical recurrent neural network (RNN) was fitted to ERP data from 38 subjects. ⋯ Hidden units were categorised according to their temporal response fields, and statistically significant differences among stimulus conditions were observed for amplitudes of units peaking in the 0-75 ms (P50), 75-125 ms (N1), and 250-400 ms (N3) latency ranges, surprisingly not including the measurement window of MMN. The model demonstrated opposite polarity changes in MMN amplitude produced by falling (70 dB) and rising (90 dB) intensity deviant stimuli, consistent with loudness dependence of sensory ERP components. This modelling study suggests that loudness dependence is a principal driver of intensity MMN, and future studies ought to clarify the distinction between loudness dependence, adaptation and prediction-error signalling.
-
The relationship of cognitive reserve and measures of reserve with longitudinal cognitive change and the duration of preclinical, prodromal, and mild Alzheimer disease (AD) dementia remains to be fully characterized. In our study, 660 β-amyloid-positive participants staged with preclinical AD, prodromal AD, and dementia due to AD from the Alzheimer's Disease Neuroimaging Initiative were selected. Cognitive reserve and brain reserve were defined by conventional proxies or the residual method at baseline. ⋯ The estimated time from preclinical to mild AD dementia varied from 15-24 years based on the different reserve groups, and we observed a linear trend for the longest duration in individuals with high cognitive reserve/high brain reserve, followed by those with high cognitive reserve/low brain reserve, low cognitive reserve/high brain reserve, and low cognitive reserve/low brain reserve. This study showed a reduced risk of cognitive decline for individuals with higher level of reserve regardless of methods for measuring reserve. Interindividual differences in reserve may be important for clinical practice and trial design.