Neuroscience
-
Several lines of evidence suggest that hormonal changes after menopause may play an important role in the incidence of cognitive dysfunction, and also in the development of Alzheimer's disease. In this study, we investigated the effect of estrogen on cognitive function in rats under different stress environment. Female rats were divided into four groups: two groups were ovariectomized (OVX) and two were sham-operated. ⋯ Vehicle or 17beta-estradiol (E2) at 20 microg/day was s.c. administered to OVX/stress rats from 2 days before the stress period to the end of behavioral analysis through an implantable osmotic pump. Chronic E2 treatment decreased stress response and improved the cognitive and morphological impairments relative to vehicle group. These data have important implications for cognition enhancing effect of estrogen treatment in postmenopausal women.
-
A critical event in the development of behavioral sensitization is a transient increase in excitatory drive to dopamine neurons of the ventral tegmental area (VTA). This is likely to be due, in part, to the ability of drugs of abuse to produce long-term potentiation, expressed as increased AMPA receptor transmission, at excitatory synapses onto VTA dopamine neurons. We investigated the role of the laterodorsal tegmentum (LDT) in behavioral sensitization because LDT neurons provide an important source of excitatory drive to VTA dopamine neurons, through mixed glutamate and cholinergic inputs. ⋯ In parallel experiments, dopamine efflux in the nucleus accumbens (NAc) following intra-LDT AMPA declined in saline rats but remained relatively stable in amphetamine rats. Both results suggest relatively greater excitability of the LDT-VTA-NAc pathway after repeated amphetamine treatment. Our results provide the first evidence that neuronal plasticity in the LDT contributes to behavioral sensitization.
-
Aristaless-related homeobox gene (ARX) is an important paired-type homeobox gene involved in the development of human brain. The ARX gene mutations are a significant contributor to various forms of X-chromosome-linked mental retardation with and without additional features including epilepsy, lissencephaly with abnormal genitalia, hand dystonia or autism. Here we demonstrate that the human ARX protein is a potent transcriptional repressor, which binds to Groucho/transducin-like enhancer of split (TLE) co-factor proteins and the TLE1 in particular through its octapeptide (Engrailed homology repressor domain (eh-1) homology) domain. ⋯ The introduction of the two most frequent ARX polyalanine tract expansion mutations increases the repression activity in a manner dependent on the number of extra alanines. Interestingly, deletions of alanine residues within polyalanine tracts 1 and 2 show low or no effect. In summary we demonstrate that the ARX protein is a strong transcription repressor, we identify novel ARX interacting proteins (TLE) and offer an explanation of a molecular pathogenesis of some ARX mutations, including the most frequent ARX mutations, the polyalanine tract expansion mutations, c.304ins(GCG)7 and c.428_451dup.
-
Many chronic pain conditions are more prevalent in women than men and both fundamental and clinical research supports the implication of endogenous pain inhibitory mechanisms. The goal of this study was to verify if sex differences on endogenous pain inhibitory mechanisms during the formalin test are opioidergic and modulated by sex hormones. Formalin tests were performed with naloxone hydrochloride, a non-selective opioid antagonist in intact and gonadectomized Sprague-Dawley rats of both sexes. ⋯ Finally, intrathecal administration permitted us to support that the action of naloxone is primarily at the spinal level, even if a supraspinal action cannot be ruled out. These results are of particular interest in showing sexual dimorphisms in endogenous pain modulation mechanisms during the interphase of the formalin test. A clearer understanding of the difference between male and female endogenous pain inhibitory pathways should lead to a better understanding of the role of endogenous pain modulation deficits in certain chronic pain conditions.
-
Reaching for food, or skilled reaching, is used as a test of basal ganglia function in preclinical studies as well as studies of human neurological conditions. Although changes in the end-point measure of success document the effects of neurotoxic cellular damage to the caudate-putamen and its treatment in rodents, there has been no examination of the cause of change in success after neurotoxic lesions of the striatum. This objective was addressed in the present study, in which rats trained to reach for single food pellets with one forelimb, received contralateral quinolinic acid or ibotenic acid lesions of the medial and lateral caudate-putamen. ⋯ After recovery of the withdrawal movement, the rats displayed chronic qualitative impairments in the rotatory movements of aiming, pronating, and supinating the forepaw. Medial quinolinic lesions improved success relative to control rats and did not change qualitative aspects of limb movement. The acute dissociation between transport and withdrawal, the chronic qualitative changes in movement elements, and the differential effect of medial and lateral injury on success, support a complex contribution of the caudate-putamen to skilled reaching that includes sensorimotor neglect, and quantitative and qualitative motoric changes.