Neuroscience
-
Our recent study has shown that activation of transient receptor potential A1 channel (TRPA1) by pungent chemicals such as allyl-isothiocyanate (AITC) requires an unidentified cytosolic factor whose action can be mimicked by inorganic polyphosphates. Thus, AITC and other pungent chemicals fail to activate TRPA1 in excised patches. It is unclear whether TRPA1 switches to a conformation that is insensitive to the pungent chemicals, or whether TRPA1 simply becomes completely non-functional and insensitive to all activators when the cytosolic factor is absent. ⋯ Similar to pungent chemicals, Ca(2+) (1-5 microM) failed to activate TRPA1 in inside-out patches, unless polyphosphates were present. These results show that TRPA1 can exist in different functional states: a native state (cell-attached patch) and a non-native state (excised patch). THC can activate TRPA1 even in the absence of polyphosphates, whereas pungent chemicals and Ca(2+) require it for activation.
-
The present studies aimed to determine whether estradiol (E(2)) modulates the stimulation of cocaine- and amphetamine-regulated transcript (CART) peptide in the mesolimbic and nigrostriatal dopaminergic systems. I.c.v. administration of the CART peptide (55-102, 1 microg/3 microl) increased dopamine turnover (3,4-dihydroxyphenylacetic acid, DOPAC) in the nucleus accumbens (NA) and striatum (ST) in ovariectomized (OVX) female Sprague-Dawley rats with E(2)-priming. ⋯ Furthermore, the effects of water-soluble form of E(2) were blocked by E(2) antagonist, tamoxifen, but not by testosterone antagonist, flutamide. Our findings are the first to demonstrate that that E(2) plays a regulatory role in stimulation of CART peptide in mesolimbic and nigrostriatal dopaminergic systems in female rats, and E(2) acts through its own receptor(s) and intracellular mechanisms.
-
Recent studies have demonstrated nicotinamide (NAM), a soluble B-group vitamin, to be an effective treatment in experimental models of traumatic brain injury (TBI). However, research on this compound has been limited to administration regimens starting shortly after injury. This study was conducted to establish the window of opportunity for NAM administration following controlled cortical impact (CCI) injury to the frontal cortex. ⋯ In the working memory task both the 15-min and 4-h groups also improved working memory compared with saline treatment. The window of opportunity for NAM treatment is task-dependent and extends to 8 h for the sensorimotor tests but only extends to 4 h post-injury in the cognitive tests. These results suggest that a 50 mg/kg treatment regimen starting at the clinically relevant time point of 4 h may result in attenuated injury severity in the human TBI population.
-
It is unclear which nicotinic acetylcholine receptor (nAChR) subtypes are involved in the nicotinic activation of cells in the subfornical organ (SFO). We investigated the nAChR subtype using molecular biological, electrophysiological, pharmacological and immunohistochemical techniques. The use of reverse transcription-polymerase chain reaction in rats demonstrated the presence of mRNAs for the alpha2, alpha3, alpha4, alpha6, alpha7, beta2 and beta4 subunits in the SFO. ⋯ Methyllycaconitine at 10 nM (a selective alpha7-nAChR antagonist) reduced the nicotine-induced current significantly, but to a lesser extent. Fluorescence-labeled alpha-bungarotoxin (a homomeric alpha7 subtype selective binding drug) binding and immunofluorescence for the alpha7 subunit showed that positive images almost overlapped with those immunopositive for an astrocyte marker. These results suggest that the alpha4beta2 subtype is the main functional receptor in SFO neurons while alpha2, alpha3, alpha6, and beta4 subunits have some effect, and homomeric the alpha7 subtype exists in SFO astrocytes.
-
Mechanisms underlying cold hypersensitivity in neuropathic states are unclear. Recent data indicate both transient receptor potential (TRP) M8 and TRPA1 play a role. In relation to TRPA1, there are reported increases in mRNA. ⋯ In contrast, compared with naive rats, mechanical thresholds of the Adelta-fibers in SNL rats are significantly decreased, the proportion of cold-sensitive and MO-sensitive Adelta-fibers is significantly increased and the response magnitude of Adelta-fibers to MO is significantly increased. MO-induced activity in Adelta-fibers is significantly reduced by Ruthenium Red (TRPA1 receptor antagonist). These results demonstrate that TRPA1 is expressed on peripheral nociceptors, and they are up-regulated on intact Adelta-fibers following nerve injury, contributing to cold hypersensitivity.