Neuroscience
-
Minocycline is a semi-synthetic second-generation tetracycline known to improve cognition in amyloid precursor protein transgenic mice. Whether it can protect the somatostatin (SRIF) receptor-effector system, also involved in learning and memory, from alterations induced by chronic i.c.v. infusion of beta-amyloid peptide (Abeta)(25-35) is presently unknown. Hence, in the present study, we tested the effects of minocycline on the SRIF signaling pathway in the rat temporal cortex. ⋯ Our results show that minocycline prevents the decrease in SRIF receptor density and somatostatin receptor (sst) 2 expression and the attenuated capacity of SRIF to inhibit adenylyl cyclase (AC) activity, alterations present in the temporal cortex of Abeta(25-35)-treated rats. Furthermore, minocycline blocks the Abeta(25-35)-induced decrease in phosphorylated cyclic AMP (cAMP) response element binding protein (p-CREB) content and G-protein-coupled receptor kinase 2 (GRK) protein expression in this brain area. Altogether, the present data demonstrate that minocycline in vivo provides protection against Abeta-induced impairment of the SRIF signal transduction pathway in the rat temporal cortex and suggest that it may have a potential as a therapeutic agent in human Alzheimer's disease, although further studies are warranted.
-
The present studies aimed to determine whether estradiol (E(2)) modulates the stimulation of cocaine- and amphetamine-regulated transcript (CART) peptide in the mesolimbic and nigrostriatal dopaminergic systems. I.c.v. administration of the CART peptide (55-102, 1 microg/3 microl) increased dopamine turnover (3,4-dihydroxyphenylacetic acid, DOPAC) in the nucleus accumbens (NA) and striatum (ST) in ovariectomized (OVX) female Sprague-Dawley rats with E(2)-priming. ⋯ Furthermore, the effects of water-soluble form of E(2) were blocked by E(2) antagonist, tamoxifen, but not by testosterone antagonist, flutamide. Our findings are the first to demonstrate that that E(2) plays a regulatory role in stimulation of CART peptide in mesolimbic and nigrostriatal dopaminergic systems in female rats, and E(2) acts through its own receptor(s) and intracellular mechanisms.
-
Recent studies have demonstrated nicotinamide (NAM), a soluble B-group vitamin, to be an effective treatment in experimental models of traumatic brain injury (TBI). However, research on this compound has been limited to administration regimens starting shortly after injury. This study was conducted to establish the window of opportunity for NAM administration following controlled cortical impact (CCI) injury to the frontal cortex. ⋯ In the working memory task both the 15-min and 4-h groups also improved working memory compared with saline treatment. The window of opportunity for NAM treatment is task-dependent and extends to 8 h for the sensorimotor tests but only extends to 4 h post-injury in the cognitive tests. These results suggest that a 50 mg/kg treatment regimen starting at the clinically relevant time point of 4 h may result in attenuated injury severity in the human TBI population.
-
It is unclear which nicotinic acetylcholine receptor (nAChR) subtypes are involved in the nicotinic activation of cells in the subfornical organ (SFO). We investigated the nAChR subtype using molecular biological, electrophysiological, pharmacological and immunohistochemical techniques. The use of reverse transcription-polymerase chain reaction in rats demonstrated the presence of mRNAs for the alpha2, alpha3, alpha4, alpha6, alpha7, beta2 and beta4 subunits in the SFO. ⋯ Methyllycaconitine at 10 nM (a selective alpha7-nAChR antagonist) reduced the nicotine-induced current significantly, but to a lesser extent. Fluorescence-labeled alpha-bungarotoxin (a homomeric alpha7 subtype selective binding drug) binding and immunofluorescence for the alpha7 subunit showed that positive images almost overlapped with those immunopositive for an astrocyte marker. These results suggest that the alpha4beta2 subtype is the main functional receptor in SFO neurons while alpha2, alpha3, alpha6, and beta4 subunits have some effect, and homomeric the alpha7 subtype exists in SFO astrocytes.
-
Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. ⋯ Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine-depleted striatum.