Neuroscience
-
Arachidonic acid (20:4) is a component of membrane lipids that has been implicated as a messenger both in physiological and pathophysiological processes, including ischemic injury and synaptic plasticity. In order to clarify direct trophic or toxic effects of arachidonic acid on central neurons, primary cultures of rat hippocampal neurons were exposed to arachidonic acid under chemically-defined conditions. Arachidonic acid present in the culture medium at concentrations over 5 x 10(-6) M showed profound toxicity, whereas at lower concentrations (10(-6) M) it significantly supported the survival of hippocampal neurons. ⋯ At lower concentrations (10(-7)-10(-6) M), arachidonic acid promoted neurite elongation, which was not inhibited by nordihydroguaiaretic acid or indomethacin. Overall, arachidonic acid has both trophic and toxic actions on cultured hippocampal neurons, part of which involves its metabolism by lipoxygenases. The mechanisms and the physiological significance of these effects are discussed.
-
Activation of neurons in the rostral ventral medulla, by electrical stimulation or microinjection of glutamate, produces antinociception. Microinjection of opioid compounds in this region also has an antinociceptive effect, indicating that opioids activate a medullary output neuron that exerts a net inhibitory effect on nociception. When given systemically in doses sufficient to produce antinociception, morphine produces distinct, opposing responses in two physiologically identifiable classes of rostral medullary neurons. "Off-cells" are activated, and have been proposed to inhibit nociceptive transmission. "On-cells" are invariably depressed, and may have a pro-nociceptive role. ⋯ Off-cells were activated following DAMGO microinjections, but only in experiments in which the tail flick reflex was inhibited. Both reflex inhibition and neuronal effects were reversed following systemic administration of naloxone. These observations thus confirm the role of the on-cell as the focus of direct opioid action within the rostral medulla, and strongly support the proposal that disinhibition of off-cells is central to the antinociception actions of opioids within this region.
-
Animal models of event-related potentials have recently been developed in rats in order to gain further understanding of the psychobiological variables which underlie these waveforms. In the present study, unanesthetized male Wistar rats, chronically implanted with electrodes, were utilized in order to: (i) compare event-related potentials recorded following the presentation of passively presented auditory stimuli from different neocortical, hippocampal and perihippocampal sites; (ii) test the effects of changes in stimulus probability and loudness on event-related potentials recorded from those sites; and (iii) record event-related potentials from rats who were actively performing in a tone discrimination task. The results of these studies showed that in all electrode sites (frontal cortex, parietal cortex, entorhinal cortex, hippocampus) a series of large amplitude potentials in the 10-200 ms latency range could be recorded in response to passively presented stimuli. ⋯ These potentials can be recorded in limbic (hippocampus and amygdala) and cortical (parietal cortex) brain sites. The event-related potentials recorded in rats respond to changes in stimulus parameters in a similar fashion to those previously described in monkeys and human subjects. The identification of a rat model of event-related potentials provides an opportunity to further explore the neural origins of event-related potentials, to estimate the role of genetics in determining individual variation in waveforms, as well as to provide electrophysiological assays of the effects of various drugs on neurosensory and cognitive processing.
-
The characteristic electroencephalographic patterns within the hippocampus are theta and sharp waves. Septal neurons are believed to play an essential role in the rhythm generation of the theta pattern. The present study examined the physiological consequences of complete and selective damage of septohippocampal cholinergic neurons on hippocampal theta activity in rats. ⋯ No changes were observed in the gamma (50-100 Hz) band. These findings indicate that the integrity of the septohippocampal GABAergic projection is sufficient to maintain some hippocampal theta activity. We hypothesize that cholinergic neurons serve to increase the population phase-locking of septal cells and thereby regulate the magnitude of hippocampal theta.
-
By means of a monoclonal mouse immunoglobulin G2a antibody against the rat liver glucocorticoid receptor and the indirect immunoperoxidase technique, the distribution of glucocorticoid receptors in neuronal and glial cell populations was mapped in the central nervous system of the male rat. The mapping was complemented by computer-assisted morphometric and microdensitometric evaluation of glucocorticoid receptor immunoreactivity in many brain regions. The quantitative analysis allowed us to achieve for the first time an objective characterization of glucocorticoid receptor distribution in the CNS, thus avoiding the ambiguities of previous mapping studies based on subjective evaluations. ⋯ Eight brain regions involving sensory, motor and limbic areas were shown to have a similarity with regard to glucocorticoid receptor-immunoreactive parameters at the level of 95%. The density of glucocorticoid receptor-immunoreactive nerve cells appeared to be the main factor in determining such a very high level of similarity. Overall, our results emphasize that glucocorticoids may appropriately tune networks of different areas to obtain optimal integration and in this way improve survival of the animal under challenging conditions.