Neuroscience
-
The release of dopamine in the nucleus accumbens of anaesthetized rats was evoked either by electrical stimulation of the mesolimbic dopaminergic pathway or by local ejection of N-methyl-D-aspartate in the ventral tegmental area. Untreated carbon-fibre electrodes implanted in the nucleus accumbens were held at +400 mV versus a reference electrode, and the oxidation current was continuously monitored. Despite a poor selectivity to dopamine versus other oxidizable compounds such as ascorbic acid, the evoked responses were solely due to dopamine overflow in the extracellular fluid since they were closely correlated with the stimulations and exhibited all the expected characteristics related to a dopamine release. ⋯ Fourth, inhibition of dopamine reuptake by nomifensine induced a five-fold decrease in the rate of decline of the evoked oxidation current. Fifth, contribution of noradrenaline and serotonin to the observed effects seems unlikely since specific reuptake blockers (desipramine and sertraline, respectively) did not alter them. Dopaminergic neurons discharge either in a single spike mode with a mean firing rate below 5 Hz or in a bursting pattern (intraburst frequency: 10 to 20 Hz).(ABSTRACT TRUNCATED AT 250 WORDS)
-
Supraspinal afferents to the pontine micturition center, Barrington's nucleus, were investigated in the rat by visualization of the retrograde tracer, cholera-toxin subunit B, in neurons following iontophoretic injection into Barrington's nucleus. Tissue sections from five rats with injections primarily localized in Barrington's nucleus revealed numerous retrogradely labeled neurons throughout all rostrocaudal levels of the periaqueductal gray (particularly its ventrolateral division), in the lateral hypothalamic area (particularly medial to the fornix), and in the medial preoptic nucleus. Retrogradely labeled neurons were also consistently found in the nucleus of the solitary tract, in the vicinity of the lateral reticular nucleus, nucleus paragigantocellularis, parabrachial nucleus, Kölliker-Fuse nucleus, cuneiform nucleus, raphe nucleus and zona incerta. ⋯ The present results suggest that Barrington's nucleus in the rat receives neuronal inputs from brainstem nuclei as well as from forebrain limbic structures including hypothalamic nuclei, the medial preoptic nucleus, and cortical areas involved in fluid balance or blood pressure regulation. In light of the role of Barrington's nucleus in micturition, the integration of these various inputs may be important for co-ordinating urinary function with fluid and cardiovascular homeostasis. Additionally, as neurons in Barrington's nucleus are immunoreactive for the stress-related neurohormone, corticotropin-releasing hormone, these diverse inputs may regulate stress-related functions of this nucleus.
-
The prenatal and postnatal ontogeny of D1A and D2 dopamine receptors was assessed by in situ hybridization of messenger RNAs encoding the receptors and by radioligand binding autoradiography. On gestational day 14, signals for D1A and D2 dopamine receptor messages were observed in selected regions in ventricular and subventricular zones which contain dividing neuroblasts, and in intermediate zones that contain maturing and migrating neurons. Specifically, D1A and D2 dopamine receptor message was observed in the developing caudate-putamen, olfactory tubercle, and frontal, cingulate, parietal and insular cortices. ⋯ At birth, expression of messenger RNA for both dopamine receptor subtypes in the striatum approximated that seen in mature rats. In contrast, D1A and D2 receptor binding, measured with [3H]SCH-23390 and [3H]raclopride, respectively, was low at birth and progressively increased to reach adult levels between days 14 and 21. The in situ hybridization data showing early prenatal expression of messenger RNA for the D1A and D2 dopamine receptors are consistent with the hypothesis that these receptors have a regulatory role in neuronal development.(ABSTRACT TRUNCATED AT 400 WORDS)
-
Because we believe that macrophage-derived nitric oxide contributes to pathology of demyelinating diseases, we have determined the differential effects of nitric oxide on primary rat glial cells in vitro. Enriched cultures of microglia, astrocytes and oligodendrocytes were treated with S-nitroso,N-acetyl-DL-penicillamine, a nitric oxide-releasing chemical. There was a significantly decreased function of one of the ferrosulfur-containing mitochondrial enzymes after S-nitroso,N-acetyl-DL-penicillamine/nitric oxide treatment in oligodendrocytes and astrocytes compared to microglia, which were much less sensitive to S-nitroso,N-acetyl-DL-penicillamine/nitric oxide at all concentrations. ⋯ These findings suggest that there is differential sensitivity of glial cells to nitric oxide. Although oligodendrocytes and astrocytes are equally susceptible to nitric oxide-induced mitochondrial damage, oligodendrocytes are more sensitive to nitric oxide-induced single stranded DNA breaks, morphological changes and cell death. Compared to both oligodendrocytes and astrocytes, microglia, nitric oxide-producing cells, are resistant to nitric oxide-induced damage.
-
The properties of rhythmic low-threshold and multireceptive spinal dorsal horn neurons were determined. Multiple neuron recordings were made via a single electrode in the lumbar spinal cord of pentobarbital-anesthetized or decerebrate, unanesthetized, spinalized rats. The background activity of a total of 223 neurons was analysed: 21.0% of 176 fully characterized neurons were low threshold, 73.3% multireceptive and 5.7% nociceptive-specific neurons. ⋯ Thus, rhythmicity exists in sensory neurons of the spinal dorsal horn probably generated within its local neuronal network and partially modulated by supraspinal descending systems. Rhythmicity is depressed by activity in primary afferent nociceptors. The role of rhythmicity for information transfer and neuronal plasticity is discussed.