Neuroscience
-
Intracellular recordings were performed on hippocampal CA3 neurons in vitro to investigate the inhibitory tonus generated by endogenously produced adenosine in this brain region. Bath application of the highly selective adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine at concentrations up to 100 nM induced both spontaneous and stimulus-evoked epileptiform burst discharges. Once induced, the 1,3-dipropyl-8-cyclopentylxanthine-evoked epileptiform activity was apparently irreversible even after prolonged superfusion with drug-free solution. ⋯ Furthermore, even high concentrations of the selective phosphodiesterase inhibitor rolipram (10 microM), which displays no affinity to adenosine receptors, did not mimic the electrophysiological actions of 1,3-dipropyl-8-cyclopentylxanthine, thus excluding the possibility that the effects of the A1 receptor antagonist on neuronal discharge behavior can be ascribed to an inhibition of phosphodiesterases. The present data demonstrate that endogenously released adenosine exerts a vigorous control on the excitability of hippocampal CA3 neurons on both the pre- and postsynaptic sites. The long-lasting disinhibition following a transient suppression of adenosinergic inhibition strongly suggests that, besides its well-known short-term effects on neuronal activity, adenosine might also contribute to the long-term control of hippocampal excitability.
-
Benzodiazepine receptors are expressed very early in the brain during embryonic life, suggesting that endogenous ligands for these receptors may play an important role during ontogenesis in the central nervous system. In the present study, the distribution and characterization of diazepam-binding inhibitor-related peptides (endozepines) in the rat brain was investigated during embryonic and postnatal development using an antibody raised against the biologically active region of the precursor molecule. Immunohistochemical labelling showed that, in newborn rats, endozepine-like immunoreactivity was present in ependymal cells of the hypothalamus. ⋯ In the telencephalon two major species were resolved, with apparent molecular weights of 10,000 and 8800, and a minor one of 6500 mol. wt. In conclusion, the present study shows that endozepines are expressed in the rat brain as early as embryonic day 18 and the amount of endozepine-like material increases rapidly during the two days preceding birth. The results also indicate that diazepam-binding inhibitor is processed to different molecular forms depending on the brain region.(ABSTRACT TRUNCATED AT 400 WORDS)
-
Several neurotropic viruses enter the brain after peripheral inoculation and spread transneuronally along pathways known to be connected to the initial site of entry. In this study, the pathways utilized by two such viruses, herpes simplex virus type 1 and mouse hepatitis virus strain JHM, were compared using in situ hybridization following inoculation into either the nasal cavity or the main olfactory bulb of the mouse. The results indicate that both viruses spread to infect a unique and only partially overlapping set of connections of the main olfactory bulb. ⋯ The results suggest that differential virus uptake in specific neurotransmitter systems contributes to the pattern of viral spread, although other factors, such as differences in access to particular synapses on infected cells and differences in the distribution of the cellular receptor for the two viruses, are also likely to be important. The data show that neural tracing with different viruses may define unique neural pathways from a site of inoculation. The data also demonstrate that two viruses can enter the brain via the olfactory system and localize to different structures, suggesting that neurological diseases involving disparate regions of the brain could be caused by different viruses, even if entry occurred at a common site.
-
Focal injection of a minute quantity of tetanus toxin into the rat neocortex induces chronic epileptogenesis. Within a day, spontaneous and stimulus-evoked paroxysmal discharges appear in widespread regions of both hemispheres and this lasts for at least nine months. Tetanus toxin blocks transmitter release, apparently by catalysing the breakdown of synaptobrevin, a synaptic protein. ⋯ At earlier times (1.5 days) after the toxin injection, however, release was significantly depressed in both hemispheres. The results indicate that at first, the toxin induces focal neocortical epileptogenesis by directly impeding GABAergic synaptic transmission but that with time there is a recovery from this initial effect. We propose, as has also been suggested for other models, that the initial epileptogenesis leaves in its wake a long-lasting change in the local functional connectivity, such that the neocortex is rendered permanently epileptic.
-
Thermal hyperalgesia was induced by UV irradiation of the glabrous skin of the hindpaw of adult female Sprague-Dawley rats. We have recorded single cell activity and studied excitability changes in wide dynamic range neurons in the lumbar spinal segments during the early phase (days 1-3) and late phase (days 5-7) of thermal hyperalgesia in animals under urethane anaesthesia. The proportion of spontaneously active wide dynamic range cells was increased following UV irradiation and the degree of spontaneous activity was enhanced during the course of hyperalgesia. ⋯ Cutting the dorsal roots (L2-5) evoked a significantly larger and more prolonged discharge in wide dynamic range cells in both UV-treated groups in comparison to control. Spontaneous activity in spinal wide dynamic range neurons was reduced after rhizotomy in each group. However, the decrease was only significant at days 1-3 (P < 0.05) but not at days 5-7.(ABSTRACT TRUNCATED AT 250 WORDS)