Neuroscience
-
The topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and lateral portions of the bed nucleus of the stria terminalis and central amygdaloid nucleus was investigated, in the rat, using the retrograde transport of wheat germ agglutinin-conjugated horseradish peroxidase. Although the caudatoputamen and nucleus accumbens are the principal components of the striatum, there is evidence that lateral portions of the bed nucleus of the stria terminalis and central amygdaloid nucleus may be striatal-like structures. The basolateral nucleus was the main source of amygdaloid fibers to all of these structures. ⋯ The principal striatal projection of the caudal basolateral nucleus was to the medial nucleus accumbens. Amygdaloid labeling produced by injections into the medial nucleus accumbens was very similar to that seen with injections into the lateral portions of the bed nucleus of the stria terminalis and central amygdaloid nucleus. The retrograde amygdaloid labeling seen in this investigation, when compared to labeling seen with cortical injections in previous studies, suggests that specific amygdaloid domains project to particular cortical areas as well as to the principal striatal targets of the same areas.
-
The organization of connections between the amygdala, prefrontal cortex and striatum was studied using anterograde and retrograde tract tracing techniques in the rat. The anterograde transport of Phaseolus vulgaris leucoagglutinin and wheat germ agglutinin conjugated to horseradish peroxidase was used to examine the striatal projections of the prefrontal cortex. These studies revealed that the prelimbic area of the medial prefrontal cortex projects mainly to the medial part of the striatum, whereas the dorsal agranular insular area of the lateral prefrontal cortex projects mainly to the ventrolateral part of the striatum. ⋯ The rostral pole and lateral portions of the basolateral nucleus project to both the lateral prefrontal cortex and its associated lateral striatal region. Many neurons in the basolateral amygdaloid nucleus, and to a lesser extent other amygdaloid nuclei, were double-labeled in these experiments, indicating that these cells send collaterals to both the prefrontal cortex and striatum. These findings indicate that discrete areas of the amygdala, and in some cases individual amygdaloid neurons, can modulate information processing in the first two links of distinct cortico-striato-pallidal systems arising in the medial and lateral prefrontal cortex.
-
The localization and distribution of quinolinic acid phosphoribosyltransferase, the degradative enzyme of the endogenous excitotoxin quinolinic acid, were studied in the post mortem human neostriatum by immunohistochemistry. In eight neurologically normal human brains, quinolinic acid phosphoribosyltransferase immunoreactivity was detected in both glial cells and neurons. Typically, glial cells containing quinolinic acid phosphoribosyltransferase immunoreactivity had numerous processes radiating from the cell bodies. ⋯ The somatic and dendritic morphology of quinolinic acid phosphoribosyltransferase-immunoreactive neurons closely resembles that of aspiny neurons seen in Golgi preparations. The localization of the specific quinolinic acid-catabolizing enzyme in distinct populations of neostriatal cells suggests specific functional correlates. It remains to be examined how the anatomical organization of quinolinic acid phosphoribosyltransferase immunoreactivity relates to the degradation of quinolinic acid in the striatum, and if the morphological characteristics and distribution of quinolinic acid phosphoribosyltransferase-immunoreactive cells are of relevance for the pathogenesis of neurodegenerative basal ganglia disorders.
-
The intradermal injection of adenosine produces a dose-dependent decrease in mechanical nociceptive threshold in the hindpaw of the rat that is not attenuated by elimination of indirect pathways for the production of hyperalgesia. Adenosine-induced hyperalgesia is mimicked by the A2-agonists, 5'-(N-ethyl)-carboxamido-adenosine and 2-phenylaminoadenosine but not by the A1-agonist, N6-cyclopentyladenosine and antagonized by the adenosine A2-receptor antagonist, PD 081360-0002 but not by the A1-antagonist, 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine. ⋯ However, 1-acetyl-2-(8-chloro-10,11-dihydrodibenz[b,f]oxazepine-10-ca rbonyl) hydrazine, a prostaglandin-receptor antagonist, inhibits prostaglandin E2 (Taiwo and Levine, Brain Res. 458, 402-406, 1988) but not 2-phenylamino-adenosine hyperalgesia and PD 081360-0002, the adenosine receptor antagonist, inhibits 2-phenylamino-adenosine but not prostaglandin E2 hyperalgesia. These data suggest that adenosine is a directly acting agent that produces hyperalgesia by an action at the A2-receptor and that this hyperalgesia is mediated by the cAMP second messenger.
-
The study was designed to obtain information on the spinal processing of input from receptors in deep somatic tissues (muscle, tendon, joint). In anaesthetized rats, the impulse activity of single dorsal horn cells was recorded extracellularly. In a pilot series, the proportion of neurons responding to mechanical stimulation of deep tissues was determined: 46.7% had receptive fields in the skin only, 35.5% could only be driven from deep tissues (deep cells), and 17.7% possessed a convergent input from both skin and deep tissues (cutaneous-deep cells). ⋯ In these presumably nociceptive cells the descending inhibition had a differential action in that the input from deep tissues was more strongly affected than was the cutaneous input to the same neuron. The recording sites of the neurons with deep input were located in the superficial dorsal horn and in and around lamina V. The results suggest that in the rat a considerable proportion of dorsal horn cells receives input from deep nociceptors and that this input is controlled by descending pathways in a rather selective way.