Neuroscience
-
This study aims to investigate whether glial cells, in particular putative astrocytes, contribute to functional distinctions between the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus. To evaluate this, we performed three different behavioral tasks (i.e., Morris water maze; MWM, Passive avoidance; PA, T-maze place preference; TPP) to determine whether the DH, IH, and VH are necessary for each task. Sensitivity of behavioral tasks was confirmed using lidocaine (2 %, 1 μl) reversible inactivation. ⋯ During the acquisition phase, FC injection into the DH or IH did not differ from the control in the number of shocks; however, during retrieval, there was a significant decrease in the latency before entering the dark chamber. The TPP test performance was impaired by FC injection in the IH. In sum, we show that glial cells, especially astrocytes in specific functional regions of the hippocampus, play distinct roles in processing aversive and rewarding experiences and contribute to the functional organization of the hippocampal longitudinal axis.
-
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. ⋯ The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
-
Migraine is a complex neurological disorder with neuroinflammation playing a crucial role in its pathogenesis. This review provides an overview of the neuroinflammation mechanisms in migraine, focusing on both cellular and molecular aspects. At the cellular level, we examine the role of glial cells, including astrocytes, microglia, oligodendrocytes in the central nervous system, and Schwann cells and satellite glial cells in the peripheral nervous system. ⋯ Recent advancements, such as [11C] PBR28-targeted imaging for visualizing astrocyte activation and single-cell sequencing for exploring cellular heterogeneity, represent breakthroughs in understanding the mechanisms of neuroinflammation in migraine. By considering factors for personalized treatments, estrogen and TRPM8 emerge as promising therapeutic targets regarding sexual dimorphism. These advancements may help bridge the gap between preclinical findings and clinical applications, ultimately leading to more precise and personalized options for migraine patients.
-
Auditory spatial attention detection (ASAD) aims to decipher the spatial locus of a listener's selective auditory attention from electroencephalogram (EEG) signals. However, current models may exhibit deficiencies in EEG feature extraction, leading to overfitting on small datasets or a decline in EEG discriminability. Furthermore, they often neglect topological relationships between EEG channels and, consequently, brain connectivities. ⋯ EEG electrodes over the frontal cortex are most important for ASAD tasks, followed by those over the temporal lobe. Additionally, the proposed model performs well even on small datasets. This study contributes to a deeper understanding of the neural encoding related to human hearing and attention, with potential applications in neuro-steered hearing devices.
-
Motor learning does not occur on a 'blank slate', but in the context of prior coordination solutions. The role of prior coordination solutions is likely critical in redundant tasks where there are multiple solutions to achieve the task goal - yet their influence on subsequent learning is currently not well understood. Here we addressed this issue by having human participants learn a redundant virtual shuffleboard task, where they held a bimanual manipulandum and made a discrete throwing motion to slide a virtual puck towards a target. ⋯ On the second day, all participants transferred to a common criterion task, which required an asymmetric solution. Results showed that: (i) the symmetry of the practiced solution affected motor variability during practice, with more asymmetric solutions showing higher exploration of the null space, (ii) when transferring to the common criterion task, participants in the symmetric group showed much higher null space exploration, and (iii) when no constraints were placed on the solution, participants tended to return to the symmetric solution regardless of the solution originally practiced. Overall, these results suggest that the stability of prior coordination solutions plays an important role in shaping learning in redundant motor tasks.