Neuroscience
-
Motor variability is an intrinsic feature of human beings that has been associated with the ability for learning and adaptation to specific tasks. The purpose of this review is to examine whether there is a possible direct relationship between individuals' initial variability, in both amount and structure variability, in their ability for learning and adaptation in motor tasks. Eighteen articles examined the relationship between initial motor variability and the ability for learning and adaptation. ⋯ While in error learning task associations were reported with both greater amount variability and more complexity structure. Nevertheless, bias in initial performance related to the amount of variability was found, so the structure of initial variability seems to be a better indicator of improvement in this type of task. Further research is needed for further research to better understand the potential relationship between initial motor variability and the ability for learning and adaptation in motor tasks.
-
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. ⋯ Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
-
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. ⋯ Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
-
Neuropeptide-S (NPS) has been demonstrated to mitigate learning and memory deficits in experimental models of Parkinson's Disease (PD). Despite this, the precise mechanisms through which NPS exerts its influence on cognitive functions remain to be fully unknown. This study aims to elucidate the effects of central administration of NPS on learning and memory deficits associated with an experimental rat hemiparkinsonian model, examining both electrophysiological and molecular parameters. ⋯ In 6-OHDA-lesioned rats, NPS treatment significantly (p < 0.05) enhanced the amplitude of LTP at the dentate gyrus/perforant path synapses. Furthermore, NPS significantly (p < 0.05) increased the number of pCaMKII and GluR1 immunoreactive cells in the hippocampus, which had been diminished due to 6-OHDA, except for GluR2 levels. These findings provide insight into the mechanisms by which central NPS administration enhances cognitive functions in an experimental model of PD, highlighting its potential therapeutic benefits for addressing cognitive deficits in PD.
-
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. ⋯ The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.