Brain research bulletin
-
Brain research bulletin · Jan 1997
Submodality-selective hyperalgesia adjacent to partially injured sciatic nerve in the rat is dependent on capsaicin-sensitive afferent fibers and independent of collateral sprouting or a dorsal root reflex.
We studied submodality dependence of sensory changes produced by unilateral ligation of the sciatic or the saphenous nerve in the rat. We focused especially on sensory changes in the skin area adjacent to the innervation area of the injured nerve. Moreover, we examined the roles of capsaicin-sensitive nociceptive fibers, collateral sprouting and a dorsal root reflex in sensory changes observed behaviorally. ⋯ At the peripheral level, the mechanical hyperalgesia adjacent to the innervation area of the injured nerve was mediated by capsaicin-sensitive nociceptive fibers. Collateral sprouting of nociceptive fibers from the uninjured to the injured innervation area did not contribute to the present sensory findings. The sciatic nerve injury did not induce a dorsal root reflex in nociceptive fibers innervating the hyperalgesic saphenous nerve area.
-
Brain research bulletin · Jan 1997
Anticonvulsant activity of new and potent inhibitors of nitric oxide synthase.
The effects of new and potent NOS inhibitors, S-methyl-L-thiocitrulline (S-Me-TC), 3-bromo 7-nitro indazole (3-Br-7-NI), and 1-(2-trifluoromethylphenyl) imidazole (TRIM), were examined on the pilocarpine-induced seizures in mice. 3-Br-7-NI and TRIM decreased the frequency of status epilepticus and mortality, while TRIM. In addition, significantly reduced the incidence of seizures. The latencies to onsets of seizures, status epilepticus, and mortality were significantly prolonged by all three NOS inhibitors, while duration of seizures was reduced by 3-Br-7-NI and TRIM. These data suggest an excitatory effect of NO in the neuronal structure involved in the pilocarpine-induced seizures.