Brain research bulletin
-
Brain research bulletin · Mar 2016
Brain-derived neurotrophic factor promotes vesicular glutamate transporter 3 expression and neurite outgrowth of dorsal root ganglion neurons through the activation of the transcription factors Etv4 and Etv5.
Brain-derived neurotrophic factor (BDNF) is critical for sensory neuron survival and is necessary for vesicular glutamate transporter 3 (VGLUT3) expression. Whether the transcription factors Etv4 and Etv5 are involved in these BDNF-induced effects remains unclear. In the present study, primary cultured dorsal root ganglion (DRG) neurons were used to test the link between BDNF and transcription factors Etv4 and Etv5 on VGLUT3 expression and neurite outgrowth. ⋯ These data imply that Etv4 and Etv5 are essential transcription factors in modulating BDNF/TrkB signaling-mediated VGLUT3 expression and neurite outgrowth. BDNF, through the ERK1/2 signaling pathway, activates Etv4 and Etv5 to initiate GAP-43 expression, promote neurofilament (NF) protein expression, induce neurite outgrowth, and mediate VGLUT3 expression for neuronal function improvement. The biological effects initiated by BDNF/TrkB signaling linked to E26 transformation-specific (ETS) transcription factors are important to elucidate neuronal differentiation, axonal regeneration, and repair in various pathological states.
-
Brain research bulletin · Mar 2016
NMDA receptor antagonists attenuate the proconvulsant effect of juvenile social isolation in male mice.
Experiencing psychosocial stress in early life, such as social isolation stress (SIS), is known to have negative enduring effects on the development of the brain and behavior. In addition to anxiety and depressive-like behaviors, we previously showed that juvenile SIS increases susceptibility to pentylenetetrazole (PTZ)-induced seizures in mice through enhancing the nitrergic system activity in the hippocampus. In this study, we investigated the possible involvement of N-methyl-D-aspartate (NMDA) receptors in proconvulsant effects of juvenile SIS. ⋯ Co-administration of non-effective doses of nitric oxide synthase (NOS) inhibitors, 7NI (25mg/kg) and L-NAME (10mg/kg), with NMDA receptor antagonists, MK-801 (0.01 mg/kg) and ketamine (0.1mg/kg) attenuated the proconvulsant effects of juvenile SIS only in isolated housed mice. Also, using real time RT-PCR, we showed that hippocampal upregulation of NR2B subunit of NMDA receptor may play a critical role in proconvulsant effects of juvenile SIS by dysregulation of NMDA/NO pathway. In conclusion, results of present study revealed that experiencing SIS during adolescence predisposes the co-occurrence of seizure disorders with psychiatric comorbidities and also, alteration of NMDA receptor structure and function in hippocampus plays a role in proconvulsant effects of juvenile SIS through enhancing the NMDA/NO pathway.
-
Brain research bulletin · Mar 2016
Systemic administration of vitamins C and E attenuates nociception induced by chronic constriction injury of the sciatic nerve in rats.
Antioxidants have been tested to treat neuropathic pain, and α-Tocopherol (vitamin E--vit. E) and ascorbic acid (vitamin C--vit. C) are potent antioxidants. ⋯ Thus, treatment with a combination of vit. C+E was more effective to treat CCI-induced neuropathic pain than vitamins alone, and the antinociceptive effect was greater with co-administration of vit. C+E and gabapentin than with gabapentin alone.
-
Brain research bulletin · Mar 2016
Peripheral neurosteroids enhance P2X receptor-induced mechanical allodynia via a sigma-1 receptor-mediated mechanism.
The role of peripheral neurosteroids and their related mechanisms on nociception have not been thoroughly investigated. Based on emerging evidence in the literature indicating that neurosteroids and their main target receptors, i.e., sigma-1, GABAA and NMDA, affect P2X-induced changes in neuronal activity, this study was designed to investigate the effect of peripherally injected dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulfate (PREGS) on P2X receptor-mediated mechanical allodynia in rats. Intraplantar injection of either neurosteroids alone did not produced any detectable changes in paw withdrawal frequency to the innocuous mechanical stimulation in naïve rats. ⋯ In order to investigate the potential role of peripheral sigma-1, GABAA and NMDA receptors in this facilitatory action, we pretreated animals with BD-1047 (a sigma-1 antagonist), muscimol (a GABAA agonist) or MK-801 (a NMDA antagonist) prior to DHEAS or PREGS+αβmeATP injection. Only BD-1047 effectively prevented the facilitatory effects induced by neurosteroids on αβmeATP-induced mechanical allodynia. Collectively, we have shown that peripheral neurosteroids potentiate P2X-induced mechanical allodynia and that this action is mediated by sigma-1, but not by GABAA nor NMDA, receptors.