Brain research bulletin
-
Brain research bulletin · Dec 2003
Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
Electrical stimulation of the dorsal regions of the periaqueductal gray (PAG) leads to defensive reactions characterized as freezing and escape responses. Until recently it was thought that this freezing behavior could be due to the recruitment of neural circuits in the ventrolateral periaqueductal gray (vlPAG), while escape would be mediated by other pathways. Nowadays, this view has been changing mainly because of evidence that freezing and escape behaviors thus elicited are not altered after lesions of the vlPAG. ⋯ Significant increases in Fos labeling were found in the dmPAG and PMd following freezing-provoking stimulation. Therefore, the present data support the notion of a neural segregation for defensive behaviors in the dorsal columns of PAG, with increased Fos expression in the dmPAG following freezing, while dlPAG is affected by both freezing and escape responses. dlPAG, CnF, VMH and PMd are part of a brain aversion network activated by fear unconditioned stimuli. The present data also suggests that the defensive responses generated at the dlPAG level do not recruit the neural circuits of the vlPAG and CeA usually activated by conditioned fear stimuli.
-
Brain research bulletin · Sep 2003
LHRH release depends on Locus Coeruleus noradrenergic inputs to the medial preoptic area and median eminence.
We tested the hypothesis that Locus Coeruleus (LC) inputs to the medial preoptic area (MPOA) and median eminence (ME) are essential for gonadotropin release. Proestrus and ovariectomized (OVX) rats were decapitated at 16:00 h. LC electrolytic lesion was performed at 11:00 h during proestrus and 24h before decapitation in OVX rats. ⋯ In OVX rats, there was an increase at 15:00 h in the LC and a decrease at 17:00 h in both areas. The number of FOS-ir neurons was lower in OVX than in proestrus animals. Thus, LC (1) is responsible, at least in part, for gonadotropin release through the activation of LHRH neurons, (2) is more closely related to the positive than the negative feedback, and (3) seems to show an intrinsic cyclic activity which is amplified by ovarian steroids.
-
Brain research bulletin · Aug 2003
Review Comparative StudyProtein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients.
In this study, data about protein S-100B, neuron-specific enolase, myelin basic protein and glial fibrillary acidic protein in cerebrospinal fluid and blood of patients with an acute or chronic progressive neurological disorder with brain damage are reviewed. Especially in disorders with acute brain damage, determination of these proteins in CSF and blood can be helpful to establish structural and/or functional brain damage to determine severity and prognosis of the disease process and to monitor treatment effects.
-
Brain research bulletin · Aug 2003
Comparative StudyStudies of the brain specificity of S100B and neuron-specific enolase (NSE) in blood serum of acute care patients.
Laboratory monitoring with damage markers of brain and of non-nervous tissues in blood serum of 401 acute care patients showed increased contents of neuron-specific enolase (NSE) and S100B besides raised levels of markers of heart, skeletal muscle, bile duct, liver, prostate, kidney, salivary gland damage or of inflammatory stress to varying frequencies. Correlation between raised NSE and S100B contents ascertained brain damage. Correlation between raised NSE and troponin I (cTnI) values indicated brain damage induced by heart failure (probably caused by hypoxia and anemia); this was assessed with correlations between NSE and other heart markers, e.g. creatine kinase (CK) isoenzymes, alpha-hydroxybutyrate dehydrogenase. ⋯ S100B release might be triggered by inflammatory stress and tissue damage. This was further supported by low NSE/S100B concentration ratios in serum compared to cerebrospinal fluid (CSF) of patients with comatose state, convulsive status, or intracerebral hemorrhage. Our data revealed CSF to be the relevant sample to monitor brain damage with NSE and S100B, whereas in serum raised S100B levels together with normal NSE levels indicated release from non-nervous tissues of acute care patients pointing out multi-organ dysfunction.
-
Brain research bulletin · Jul 2003
Comparative StudyUnilateral hindpaw inflammation induces bilateral activation of the locus coeruleus and the nucleus subcoeruleus in the rat.
Several lines of evidence have shown that unilateral hindpaw inflammation produces activation of the locus coeruleus (LC) and the nucleus subcoeruleus (SC), resulting in descending modulation of nociceptive processing in the dorsal horn. However, it is unclear if the LC/SC is activated unilaterally or bilaterally following the development of unilateral hindpaw inflammation. The present study was designed to clarify this question. ⋯ Two and a half hours after the induction of inflammation, in both groups of rats with unilateral lesion, paw withdrawal latencies decreased significantly in the LC/SC-lesioned rats. However, there was no significant difference in paw withdrawal latencies between the LC/SC-lesioned rats and sham-operated rats, indicating that unilateral activation of the LC/SC is sufficient for modulating nociceptive processing in the dorsal horn. These results suggest that unilateral hindpaw inflammation induces bilateral activation of the LC/SC.