Neurochemical research
-
Neurochemical research · May 1998
Use of a hemoglobin-trapping approach in the determination of nitric oxide in in vitro and in vivo systems.
We describe methods for measuring the release of nitric oxide (NO) derived from organic nitrates in vitro, using triple wavelength and difference spectrophotometry in the presence and absence of concentric microdialysis probes. These methods are based on the ability of NO to oxidize oxyhemoglobin (OxyHb) to methemoglobin (MetHb) quantitatively in aqueous solution. Isosorbide dinitrate (ISDN), a thiol-dependent organic nitrate, increased MetHb concentration in 45 min from 2.47 +/- 0.47 to 4.15 +/- 0.12 microM (p < 0.05) and decreased OxyHb concentration from 2.13 +/- 0.35 to 0.33 +/- 0.26 microM (p < 0.05) at 37 degrees C. ⋯ To demonstrate the applicability of this technique to in vivo microdialysis, we implanted concentric microdialysis probes into hippocampus and cerebellum of conscious and anesthetized rats. Baseline NO concentrations in hippocampus of conscious and anesthetized rats were 11 +/- 2 nM and 23 +/- 9 nM, respectively, while in the cerebellum NO concentrations were 28 +/- 9 nM and 41 +/- 20 nM, respectively. These results demonstrate that microdialysis using a novel hemoglobin-trapping technique possesses adequate sensitivity to measure the NO levels produced from organic nitrates in aqueous solutions, and further document the applicability of this approach to in vivo systems.