Neurochemical research
-
Neurochemical research · Oct 2013
Decreased expression and role of GRK6 in spinal cord of rats after chronic constriction injury.
Nerve injury and inflammation can both induce neuropathic pain via the production of pro-inflammatory cytokines. In the process, G protein-coupled receptors (GPCRs) were involved in pain signal transduction. GPCR kinase (GRK) 6 is a member of the GRK family that regulates agonist-induced desensitization and signaling of GPCRs. ⋯ In addition, the level of TNF-α underwent the negative pattern of GRK6 in spinal cord. And neutralized TNF-α by antibody intrathecal injection up-regulated GRK6 expression and attenuated the mechanical allodynia and heat hyperalgesia in CCI model. All the data indicated that down-regulation of neuronal GRK6 expression induced by cytokine may be a potential mechanism that contributes to increasing neuronal signaling in neuropathic pain.
-
Neurochemical research · Oct 2013
Tat-collapsin response mediator protein 2 (CRMP2) increases the survival of neurons after NMDA excitotoxity by reducing the cleavage of CRMP2.
Collapsin response mediator protein 2 (CRMP2) is a brain-specific multifunctional adaptor protein involved in neuronal polarity and axonal guidance. Our previous results showed CRMP2 may be involved in the hypoxic preconditioning and ischemic injury, but the mechanism was not clear. This study explored whether CRMP2 was involved in NMDA-induced neural death, and the possible mechanism. ⋯ Thiazolyl blue tetrazolium bromide assay, Hoechst33342/Propidium Iodide staining and Western blot assay showed that Tat-CRMP2 pretreatment increased cell viability compared with the control group against NMDA exposure by decreasing the cleavage of CRMP2. In conclusion, these studies indicated that cleavage of CRMP2 plays an important role involved in the NMDA-induced injury. The cleavage of CRMP2 may be a promising target for excitatory amino acid-related ischemic and hypoxic injury.
-
Neurochemical research · Oct 2013
Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model.
Inflammatory response plays an important role in the pathogenesis of secondary damage after traumatic brain injury (TBI). The inflammasome is a multiprotein complex involved in innate immunity and a number of studies have suggested that the inflammasome plays a critical role in a host inflammatory signaling. Nucleotide-binding domain, leucine-rich repeat, pyrin domain containing 3 (NLRP3) is a key component of the NLRP3-inflammasome, which also includes apoptotic speck-containing protein (ASC) with a cysteine protease (caspase)-activating recruitment domain and pro-caspase1. ⋯ Moreover, enzyme linked immunosorbent assay was used to detect the alterations of IL-1β and IL-18 at each time point post-injury. The results showed that, TBI could induce assembly of NLRP3-inflammasome complex, increased expression of ASC, activation of caspase1, and processing of IL-1β and IL-18. These results suggested that NLRP3-inflammasome might play an important role in the inflammation induced by TBI and could be a target for TBI therapy.
-
Neurochemical research · Oct 2013
Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.
This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. ⋯ BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.