Neurochemical research
-
Neurochemical research · May 1998
Use of a hemoglobin-trapping approach in the determination of nitric oxide in in vitro and in vivo systems.
We describe methods for measuring the release of nitric oxide (NO) derived from organic nitrates in vitro, using triple wavelength and difference spectrophotometry in the presence and absence of concentric microdialysis probes. These methods are based on the ability of NO to oxidize oxyhemoglobin (OxyHb) to methemoglobin (MetHb) quantitatively in aqueous solution. Isosorbide dinitrate (ISDN), a thiol-dependent organic nitrate, increased MetHb concentration in 45 min from 2.47 +/- 0.47 to 4.15 +/- 0.12 microM (p < 0.05) and decreased OxyHb concentration from 2.13 +/- 0.35 to 0.33 +/- 0.26 microM (p < 0.05) at 37 degrees C. ⋯ To demonstrate the applicability of this technique to in vivo microdialysis, we implanted concentric microdialysis probes into hippocampus and cerebellum of conscious and anesthetized rats. Baseline NO concentrations in hippocampus of conscious and anesthetized rats were 11 +/- 2 nM and 23 +/- 9 nM, respectively, while in the cerebellum NO concentrations were 28 +/- 9 nM and 41 +/- 20 nM, respectively. These results demonstrate that microdialysis using a novel hemoglobin-trapping technique possesses adequate sensitivity to measure the NO levels produced from organic nitrates in aqueous solutions, and further document the applicability of this approach to in vivo systems.
-
Neurochemical research · Jun 1997
Effects of excitatory amino acids on cerebral oxygen consumption and blood flow in rat.
This investigation tested the importance of excitatory amino acids' effects on regional cerebral O2 consumption and the concomitant changes in cerebral blood flow (rCBF) in isoflurane anesthetized rats. In the glutamate or N-methyl-D-aspartate (NMDA) groups, 10(-2) M glutamate or NMDA was topically applied to the right cortex and the left cortex was used as a control. One mg/kg dizocilpine maleate (MK-801), a non-competitive NMDA receptor antagonist, was administered (iv) to the MK-801 group and saline was given to the control group. ⋯ The rCBF was 48 +/- 9 in the MK-801 treated cortex and 99 +/- 22 in the control cortex. Some substances produced by the activation of NMDA receptors may be related to the coupling of cerebral metabolism and blood flow, since after blockade of NMDA receptors with MK-801, this relationship is uncoupled. These findings suggest that glutamatergic processes have a major effect on cerebral O2 consumption and that this is at least partly due to NMDA receptors.
-
Neurochemical research · Jul 1996
Neurotrophin-3 and trkC-immunoreactive neurons in rat dorsal root ganglia correlate by distribution and morphology.
Previous studies have shown that a subpopulation of large dorsal root ganglion neurons contains neurotrophin-3 (NT3)-like immunoreactivity. It is not known, however, whether these NT3 immunoreactive neurons also express the high affinity receptor for NT3, trkC. In the present study, the distribution and morphology of trkC immunoreactive neurons have been correlated with those of NT3 immunoreactive neurons in the dorsal root ganglia. ⋯ Almost twice the number of these neurons are present in the cervical and lumbar spinal ganglia than in the thoracic. Co-localization study indicates that 94% of NT3 immunoreactive neurons express trkC. Our findings support the proposal that NT3 in these neurons is derived from their peripheral targets rather than synthesized in situ.
-
Neurochemical research · Jan 1996
Comparative StudyMu- and delta-opioid receptor antagonists precipitate similar withdrawal phenomena in butorphanol and morphine dependence.
The relative involvement of mu- and delta-opioid receptors in the mediation of butorphanol-, as compared to morphine-, dependence was examined with the use of highly selective antagonists at mu- and delta-opioid receptors. Extracellular fluid levels of glutamate (Glu) and aspartate (Asp) were measured within the pontine locus coeruleus following precipitation of withdrawal from dependence on either butorphanol or morphine in conscious Sprague-Dawley rats. Dependence was induced by intracerebroventricular (i.c.v.) infusion of butorphanol (26 nmol/mu l/h), morphine (26 nmol/mu l/h) or saline vehicle (1 mu l/h) for 3 days by means of an osmotic minipump. ⋯ Administration of naltrindole produced equivalent signs of withdrawal in both morphine- and butorphanol-dependent rats. Withdrawal from dependence on both morphine and butorphanol is characterized by elevations in coerulear levels of excitatory amino acids. Responses elicited following the use of selective mu- and delta-opioid receptor antagonists to precipitate withdrawal suggest that the role played by these receptors in mediation of the signs and symptoms of withdrawal do not differ greatly between butorphanol- and morphine-dependent rats.
-
Neurochemical research · Aug 1990
Red cell phenylalanine is not available for transport through the blood-brain barrier.
The possibility that red cell-sequestered amino acids such as phenylalanine are available for transport through the brain capillary wall, i.e., the blood-brain barrier (BBB), in vivo was investigated in the present studies with the carotid artery injection technique. Control studies included the examination of the availability of red cell-sequestered solutes such as phenylalanine or D-glucose to liver cells in vivo using a portal vein injection technique. ⋯ Therefore, given favorable kinetics it is possible for red cell-sequestered solute to be available for uptake by tissues. However, in the case of neutral amino acids such as phenylalanine, red cell-sequestered amino acid is not available for transport through the BBB in vivo.