Medical & biological engineering & computing
-
Med Biol Eng Comput · Jan 1999
Estimation of respiratory volumes from the photoplethysmographic signal. Part I: Experimental results.
To evaluate the possibility of respiratory-volume measurement using photoplethysmography (PPG), PPG signals from 16 normal volunteers are collected, and the respiratory-induced intensity variations (RIIV) are digitally extracted. The RIIV signals are studied while respiratory volume is varied. Furthermore, respiratory rate, body posture and type of respiration are varied. ⋯ Absolute measurements of the respiratory volume are not possible from the RIIV signal with the present set-up. The RIIV signal also seems to be affected by respiratory rate and type. More knowledge about respiratory parameters and improved sensor and filter design are required to make absolute measurements of volumes possible.
-
Med Biol Eng Comput · Jan 1999
Estimation of respiratory volumes from the photoplethysmographic signal. Part 2: A model study.
A Windkessel model has been constructed with the aim of investigating the respiratory-volume dependence of the photoplethysmographic (PPG) signal. Experimental studies show a correlation between respiratory volume and the peak-to-peak value of the respiratory-induced intensity variations (RIIV) in the PPG signal. The model compartments are organised in two closed chambers, representing the thorax and the abdomen, and in a peripheral part not directly influenced by respiration. ⋯ An expected decrease in the amplitude of the respiratory signal with increased respiratory rate is also found, which is due to the lowpass characteristics of the vessel system. Variations in the relationship between thoracic and abdominal respiration also affect the RIIV signal. The simulations explain and verify what has been found previously in experimental studies.