Medical & biological engineering & computing
-
Med Biol Eng Comput · Sep 2013
Mortality prediction of rats in acute hemorrhagic shock using machine learning techniques.
This study sought to determine a mortality prediction model that could be used for triage in the setting of acute hemorrhage from trauma. To achieve this aim, various machine learning techniques were applied using the rat model in acute hemorrhage. Thirty-six anesthetized rats were randomized into three groups according to the volume of controlled blood loss. ⋯ The SVM model showed better sensitivity (1.000) and area under curve (0.972) than the LR, ANN, and RF models for mortality prediction. The important variables selected by the SVM were NI and LC. The SVM model may be very helpful to first responders who need to make accurate triage decisions and rapidly treat hemorrhagic patients in cases of trauma.
-
Med Biol Eng Comput · Sep 2013
Monitoring respiration in wheezy preschool children by pulse oximetry plethysmogram analysis.
The aim of this study was to investigate whether respiratory information can be derived from pulse oximetry plethysmogram (pleth) recordings in acutely wheezy preschool children. A digital pulse oximeter was connected via 'Bluetooth' to a notebook computer in order to acquire pleth data. Low pass filtering and frequency analysis were used to derive respiratory rate from the pleth trace; the ratio of heart rate to respiratory rate (HR/RR) was also calculated. ⋯ For the follow-up measurements, frequency analysis of the pleth waveform showed similarly good agreement in recordings on 15 of the 16 children. Respiratory rate was higher (p < 0.001), and HR/RR ratio was lower (p = 0.03) during acute wheeze than at follow-up. This study suggests that respiratory rate can be derived from pleth traces in wheezy preschool children.