Toxicology letters
-
Silver ion has strong antimicrobial properties and is used in a number of wound dressings. In burn models, silver-nylon dressings produce elevated silver levels in the wound along with minimal systemic effect. We evaluated systemic toxicity in a non-burn wound model to see if a similar pattern of silver ion distribution would occur. ⋯ A 21-day application of silver-nylon dressings to a non-burn dermal wound produces no systemic or local toxicity in Gottingen minipigs.
-
Blast lung injury is associated with high morbidity and mortality. Vaporized perfluorocarbon (PFC) inhalation has been reported to attenuate acute respiratory distress syndrome in humans and animal models. However, the effect of vaporized PFC on blast lung injury is still unknown. ⋯ PFC treatment downregulated interleukin (IL)-6, tumor necrosis factor (TNF)-α, and malondialdehyde (MDA), and upregulated superoxide dismutase (SOD) activity. PFC also suppressed expression of MAPK/NF-κB and Nrf2 protein levels. Our results suggest that PFC attenuated blast-induced acute lung injury by inhibiting MAPK/NF-κB activation and inducing Nrf2 expression in dogs.
-
The chemical warfare agent sulfur mustard (SM) affects all cells in the epidermis including melanocytes which are responsible for melanin synthesis. After exposure to SM, pigment abnormalities like hypo- and hyperpigmentation can occur. The underlying molecular pathomechanisms of SM exposure on human melanogenesis have not been elucidated so far. ⋯ Our findings demonstrated that exposure to low SM concentrations increased melanin synthesis accompanied with an increase in protein expression. In contrast, high SM concentrations led to decreased melanin content and a downregulation in expression of all investigated melanogenesis-associated proteins. We concluded that low SM concentrations may cause hyperpigmentation while high SM concentrations decreased melanin content which may explain hypopigmented skin areas in SM exposed patients.