Molecular immunology
-
Molecular immunology · Jan 2008
Nodavirus increases the expression of Mx and inflammatory cytokines in fish brain.
Nodavirus has become a serious pathogen for a wide range of cultured marine fish species. In the present work, the expression of genes related to immune and inflammatory responses of sea bream (Sparus aurata L.), considered as non susceptible species, was studied both in vitro and in vivo. No replication of the virus was observed in head kidney macrophages and blood leukocytes. ⋯ In head kidney, the over expression of TNFalpha was only observed 1 day p.i. The expression of Mx, an interferon induced gene, was increased in brain and head kidney of infected sea bream, reaching values of 1300-fold compared to controls in brain three days post-infection. For comparative purposes, we analyzed the expression of the same genes on a susceptible species, such as sea bass (Dicentrarchus labrax) and, although the same pattern of expression was observed both in brain and kidney, the magnitude was different mainly in the case of brain, the key organ of the infection, where higher expression of TNFalpha and lower expression of Mx compared with control was observed.
-
Molecular immunology · Jan 2008
Intranasal immunization with a dominant T-cell epitope peptide of a major allergen of olive pollen prevents mice from sensitization to the whole allergen.
Mucosal tolerance induction with vaccines based on peptides representing T-cell epitopes of allergens is a promising way for treating allergic diseases. Ole e 1 is the main allergen of olive pollen, which is an important cause of allergy in Mediterranean countries. The aim of this study was to evaluate the ability of the peptide T109-K130 containing a dominant T-cell epitope of Ole e 1, to modulate the allergen-specific immune response in a prophylactic mouse model. ⋯ Similar results were obtained when mice were sensitized 10 weeks after treatment. Our results demonstrate that intranasal administration of a single T-cell peptide protects mice against subsequent sensitization to the allergen, possibly via IFN-gamma and IL-10. This study emphasizes the usefulness of nasal peptide T-based vaccines against allergy.
-
Molecular immunology · Jul 2007
Analysis of the TCR alpha-chain rearrangement profile in human T lymphocytes.
The size of the available human alphabeta T cell repertoire is difficult to determine and is open to debate. Empirical analysis of TCR beta-chain diversity reveals approximately 10(6) different beta chains in peripheral blood. Due in part to locus complexity, comparable information for TCR alpha is lacking. ⋯ The number of V-J alpha combinations achieved is approximately 44-56% of the total combinatorial possibilities, significantly lower than theoretical estimates. We also demonstrate that TCR alpha-chain diversity in peripheral T lymphocytes mimics the same general patterns of rearrangement as observed in the thymus, and these patterns appear conserved among different individuals. This unexpected observation indicates that, unlike the TCR beta locus, the human TCR alpha-chain repertoire is primarily predetermined by genetic recombination and its size is restricted by limits on the combinatorial repertoire rather than post-thymic selection.
-
Molecular immunology · Mar 2007
Comparative StudyEffect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement.
C1-inhibitor is increasingly used experimentally and clinically in inflammatory conditions like septicemia and ischemia-reperfusion injury. Several mechanisms may account for the anti-inflammatory effects of C1-inhibitor, including inhibition of complement. The aim of the present study was to investigate and compare the supraphysiologic effect of C1-inhibitor on the three complement pathways. ⋯ The inhibition pattern was strikingly different in the classical and lectin pathway, compared to the alternative. Previous studies interpreting the effects of C1-inhibitor as only due to classical pathway inhibition needs reconsideration. The data has implications for the therapeutic use of C1-inhibitor.
-
Molecular immunology · Mar 2007
Clinical TrialAlterations in T cell signal transduction by M. leprae antigens is associated with downregulation of second messengers PKC, calcium, calcineurin, MAPK and various transcription factors in leprosy patients.
Mycobacterium leprae, the causative agent of leprosy, challenges host defense mechanism by impairing the signal transduction of T cells which leads to downregulation of T cell proliferation, mainly as a consequence of interference with IL-2 production. In this study we sought to identify how soluble forms of M. leprae antigen(s) or particulate (liposome) delivery of the same antigens with two immunomodulators Murabutide and T cell peptide of Trat protein influence the transcription of IL-2 gene in anergic T cells of lepromatous patients. It was demonstrated that MLCwA/ManLAM stimulated cells of BL/LL patients showed defects in both jun-NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activities there by resulting in decreased AP-1 activity. ⋯ Since activation of ERK/JNK/PKC kinases and CN phosphatase are required for stimulation of IL-2 transcription, these data provide a molecular explanation for the block in IL-2 production by M. leprae antigens. Thus the above study revealed suppression of all the three distinct biochemical pathways, viz. Ca-CN-NFAT pathway, PKC-NF-kappaB pathway, and MAPK-AP-1 pathway by M. leprae antigen(s) in anergized T cells of lepromatous patients which were activated by liposomal delivery of M. leprae antigens containing the two immunomodulators leading to optimal induction of IL-2 gene expression, which was required for the activation, and proliferation of T cells in lepromatous patients.