Journal of biomechanical engineering
-
The aim of this work is to develop a remotely controlled manipulator to perform minimally invasive diagnostic and therapeutic interventions in the abdominal and thoracic cavities, with real-time magnetic resonance imaging (MRI) guidance inside clinical cylindrical MR scanners. The manipulator is composed of a three degree of freedom Cartesian motion system, which resides outside the gantry of the scanner, and serves as the holder and global positioner of a three degree of freedom arm which extends inside the gantry of the scanner At its distal end, the arm's end-effector can carry an interventional tool such as a biopsy needle, which can be advanced to a desired depth by means of a seventh degree of freedom. These seven degrees of freedom, provided by the entire assembly, offer extended manipulability to the device and a wide envelope of operation to the user, who can select a trajectory suitable for the procedure. ⋯ Path planning is performed with graphical tools for setting the trajectory of insertion of the interventional tool using multislice and/or three dimensional MR images which are refreshed in real time. The device control is performed with an embedded computer which runs real-time control software. The manipulator compatibility with the MR environment and image-guided operation was tested on a 1.5 T MR scanner.
-
Cardiovascular disease (CVD) is perhaps the most significant worldwide health issue. While open-heart surgery remains the predominant treatment, significant advancements have been made in minimally invasive surgery (MIS) and minimally invasive robot-assisted (MIRA) surgery. MIRA techniques offer many advantages over open-heart procedures and have extended the capabilities of MIS. ⋯ MIRA cardiac procedures can move from novel procedures performed by a select group of surgeons on a limited pool of patients to a viable alternative available to the majority of patients with CVD. In this research we propose a design for a self-contained device that delivers a locking knot. Results suggest that consistent knots can be delivered at a time savings of 12.5% and 26.4% over manual knots for trained and untrained users of a surgical robot, respectively.
-
Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus--an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. ⋯ For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.