Behavioural brain research
-
In this study, we decided to use low doses of memantine pretreatment to examine the roles of the immune function in cocaine-supported conditioning. Cocaine-induced conditioned place preference (CPP) was used to assess the hedonic value and/or reinforcing efficacy of cocaine and cocaine-supported conditioning. Systemic pretreatment with memantine (20, 2.0, 0.2, and 0.02 mg/kg/injection) 30 min before each cocaine and saline conditioning trial abolished the acquisition of cocaine-induced CPP in mice. ⋯ Finally, intra-mPFC infusion of recombinant IL-6, but not thalidomide, reversed memantine (0.02 mg/kg/injection × 6)-decreased cocaine-induced CPP. These results, taken together, suggest that cocaine conditioning-enhanced IL-6 in mPFC may be, in part, involved in the acquisition of cocaine-induced CPP. Moreover, an extremely low dose of memantine may decrease the acquisition of cocaine-induced CPP by reversing cocaine conditioning-increased IL-6 levels in mPFC.
-
Memory impairment induced by streptozotocin in rats is a consequence of changes in CNS that are secondary to chronic hyperglycemia, impaired oxidative stress, cholinergic dysfunction, and changes in glucagon-like peptide (GLP). Treatment with antihyperglycemics, antioxidants, and cholinergic agonists are reported to produce beneficial effect in this model. Berberine, an isoquinoline alkaloid is reported to exhibit anti-diabetic and antioxidant effect, acetylcholinesterase (AChE) inhibitor, and increases GLP release. ⋯ In another set of experiment, berberine (100mg/kg) treatment during training trials also improved learning and memory, lowered hyperglycemia, oxidative stress, and ChE activity. Chronic treatment (30 days) with vitamin C or metformin, and donepezil during training trials also improved diabetes-induced memory impairment and reduced oxidative stress and/or choline esterase activity. In conclusion, the present study demonstrates treatment with berberine prevents the changes in oxidative stress and ChE activity, and consequently memory impairment in diabetic rats.
-
Lithium effects on brain functions such as cognition, attention, learning and memory are well-established for ages; however, the way it affects these functions and its precise mechanism of action remains unknown. The purpose of this study was to determine the effects of lithium on the consolidation of morphine-associated conditioned place preference and the possible involvement of the NO/cGMP pathway. Using an unbiased conditioned place preference (CPP) model, the effects of lithium (1-100 mg/kg, i.p.), nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (5-100 mg/kg, i.p.), nitric oxide precursor L-arginine (50-150 mg/kg, i.p.) and phosphodiesterase inhibitor sildenafil (5-40 mg/kg, i.p.) on the consolidation of morphine-induced CPP were assessed. ⋯ Also, co-administration of sub-effective doses of lithium (1 mg/kg) and L-NAME (5 mg/kg) disrupted consolidation of CPP. However, delayed administration of effective doses of lithium, which shows specific effect on memory consolidation, did not affect morphine-induced CPP. Lithium seems to inhibit consolidation of morphine-induced CPP and this impairing effect might be via nitric oxide/cyclic GMP pathway.
-
In rodents, exposure to acute inescapable, but not escapable, stress potentiates morphine conditioned place preference (CPP), an effect that is dependent upon hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). Six weeks of voluntary wheel running constrains activation of DRN 5-HT neurons during exposure to inescapable stress. Six weeks of voluntary wheel running before inescapable stress blocked stress-induced potentiation of morphine CPP.