Behavioural brain research
-
Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. ⋯ Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision.
-
This study explores how people represent spatial information in order to accomplish a visuo-motor task. To this aim we combined two fundamental components of the human visuo-spatial system: egocentric and allocentric frames of reference and coordinate and categorical spatial relations. Specifically, participants learned the position of three objects and then had to judge the distance (coordinate information) and the relation (categorical information) of a target object with respect to themselves (egocentric frame) or with respect to another object (allocentric frame). ⋯ The possible influence of stimuli characteristics (3D objects vs. 2D images) and delay between learning phase and testing phase (1.5 vs. 5s) was also assessed. Results showed an advantage of egocentric coordinate judgments over the allocentric coordinate ones independently from the kind of stimuli used and the temporal parameters of the response, whereas egocentric categorical judgments were more accurate than allocentric categorical ones only with 3D stimuli and when an immediate response was requested. This pattern of data is discussed in the light of the "perception-action" model by Milner and Goodale [13] and of neuroimaging evidence about frames of reference and spatial relations.
-
Comparative Study
Differential effects of oxycodone, hydrocodone, and morphine on the responses of D2/D3 dopamine receptors.
Oxycodone and hydrocodone are opioids which are widely used for pain management and are also commonly misused and abused. The exposure to opioid analgesics has been associated with altered responses of D2-like dopamine receptors (D2DRs). Our recent results suggest that various opioids will differentially modulate the responses of D2DRs. ⋯ Mice pretreated with oxycodone showed significantly greater locomotor supersensitivity to quinpirole than did morphine-pretreated mice, while hydrocodone-pretreated mice showed sensitivity in between that of mice treated with morphine and oxycodone. This finding suggests that various opioids differentially modulate the responses of D2DRs. It provides further evidence supporting of the notion that various opioids carry differential risks to the dopamine reward system.