Lasers in surgery and medicine
-
Interstitial photodynamic therapy (iPDT) of non-resectable recurrent glioblastoma using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) has shown a promising outcome. It remained unclear, however, to what extent inter- and intra-tumoural differences of PpIX concentrations influence the efficacy of iPDT. In the current pilot study, we analysed PpIX concentrations quantitatively and assessed PpIX induced fluorescence and photobleaching intraoperatively. ⋯ Intra-tumoural PpIX concentrations exhibited pronounced inter- and intra-tumoural variations in glioblastoma, which are directly linked to variable degrees of fluorescence intensity. High intra-tumoural PpIX concentrations with strong fluorescence intensity and complete photobleaching after iPDT seem to be associated with favourable outcome. Real-time monitoring of PpIX fluorescence intensity and photobleaching turned out to be feasible and safe and might be employed for early treatment prognosis of iPDT.
-
Despite the success of using photobiomodulation (PBM), also known as low level light therapy, in promoting recovery after central nervous system (CNS) injury, the effect of PBM on microglia, the primary mediators of immune and inflammatory response in the CNS, remains unclear. Microglia exhibit a spectrum of responses to injury, with partial or full polarization into pro- and anti-inflammatory phenotypes. Pro-inflammatory (M1 or classically activated) microglia contribute to chronic inflammation and neuronal toxicity, while anti-inflammatory (M2 or alternatively activated) microglia play a role in wound healing and tissue repair; microglia can fall anywhere along this spectrum in response to stimulation. ⋯ These data suggest that the Arndt-Schulz law as applied to PBM for a specific bioassay does not hold true in cells with a spectrum of responses, and that PBM can alter microglial phenotype across this spectrum in a dose-dependent manner. These data are therefore of important relevance to not only therapies in the CNS but also to understanding of PBM effects and mechanisms.