Lasers in surgery and medicine
-
The current standard for diagnosis of skin cancers is visual inspection followed by biopsy and histopathology. This process can be invasive, subjective, time consuming, and costly. Optical techniques, including Optical Coherence Tomography (OCT) and Raman Spectroscopy (RS), have been developed to perform non-invasive characterization of skin lesions based on either morphological or biochemical features of disease. The objective of this work is to report a clinical instrument capable of both morphological and biochemical characterization of skin cancers with RS-OCT. ⋯ The RS-OCT instrument reported here is capable of morphological and biochemical characterization of cancerous skin lesions in a clinical setting. OCT can visualize microstructural irregularities and perform an initial morphological analysis of the lesion. The images can be used to guide acquisition of biochemically specific Raman spectra. The two data sets can then be evaluated with respect to one another to take advantage of the mutually complimentary nature of RS and OCT.
-
Post-traumatic nerve repair is still a challenge for rehabilitation. It is particularly important to develop clinical protocols to enhance nerve regeneration. The present study investigated the effects of 660 and 780 nm low-level laser therapy (LLLT) using different energy densities (10, 60, and 120 J/cm²) on neuromuscular and functional recovery as well as on matrix metalloproteinase (MMP) activity after crush injury in rat sciatic nerve. ⋯ Data suggest that 660 nm LLLT with low (10 J/cm²) or moderate (60 J/cm²) energy densities is able to accelerate neuromuscular recovery after nerve crush injury in rats.
-
We have used a 660 nm, 80 mW laser diode in genetic diabetic mice to stimulate the healing of wounds covered with a Tegaderm HP dressing that causes a retardation of contraction (splinted wounds). The purpose of our study was to examine the effects of irradiating the wounds for different time intervals in order to determine a dose response relationship. ⋯ Irradiation with 660 nm, 80 mW at an energy density of 3.7-5.0 J/cm² each day for 7 days caused the maximal stimulation of healing in splinted wounds of diabetic mice.
-
The onset and progression of early tooth decay is often preventable with dental sealants. However, occasionally decay progresses underneath the sealant. Current technology does not permit monitoring of potential lesion progression or arrest. Dental sealants themselves mask the visual cues that identify early tooth decay, and radiographs are not sufficiently sensitive. Therefore, clinicians can be reluctant to use dental sealant. The objective of this ex vivo study was to evaluate the ability of dentists to detect decay beneath commonly used dental sealants using optical coherence tomography (OCT) imaging. STUDY DESIGNS/MATERIALS/METHODS: Forty extracted teeth were divided into equal groups of carious and non-carious teeth, as determined by visual inspection. After radiographs and OCT imaging, teeth were randomly assigned for sealant placement with one of four commonly purchased dental sealants: Clinpro™, Fuji Triage™, Embrace Wet Bond™, and Delton™.Following sealant placement, teeth were radiographed, imaged with OCT, sectioned, examined histologically, and scored as healthy/not healthy. OCT and radiographic images were scored separately. The gold standard was histopathological diagnosis from the serial sections.Cohen's kappa, sensitivity, negative predictive value, and positive predictive value were computed for all measures. ⋯ In this ex vivo study, dentists were able to detect tooth decay beneath four commonly used dental sealants based on OCT images. Clinical investigations are now underway to determine the usefulness of this approach in vivo.
-
The main objective of the present study is to demonstrate the feasibility of utilizing a novel non-invasive radiofrequency (RF) device to induce lethal thermal damage to subcutaneous adipose tissue only by establishing a controlled electric field that heats up fat preferentially. ⋯ A controlled internal electric field perpendicular to the skin-fat interface is selective in heating up fat and, consequently, has the ability to induce lethal thermal damage to subcutaneous adipose tissues while sparing overlying and underlying tissues. In vitro adipocyte cells are heat sensitive to thermal exposures of 50 and 45 degrees C on the order of minutes, 1 and 3 minutes, respectively. In vivo, 15 minutes thermal exposures to 43-45 degrees C result in a delayed adipocyte cellular death response-in this study, 9 days. The novel RF device presented herein effectively delivers therapeutic thermal exposures to subcutaneous adipose tissues while protecting epidermal and dermal layers.