Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie
-
Biomed. Pharmacother. · Sep 2019
ReviewInvolvement of noncoding RNAs in epigenetic modifications of esophageal cancer.
Esophageal cancer (EC) is a serious digestive malignancy and is a leading cause of cancer-related mortality. Apart from genetic mutations, many epigenetic alterations including DNA methylation and histone modifications associated with chromatin remodeling have been identified in the regulation of gene expression in EC. Recently, noncoding RNAs, and mainly lncRNAs and miRNAs, have been revealed to be involved in the epigenetic regulation of EC. In this review, we focus on describing new insights on epigenetic processes associated with noncoding RNAs, which have been characterized to be responsible for the development and progression of EC.
-
Biomed. Pharmacother. · Sep 2019
Korean red ginseng water extract alleviates atopic dermatitis-like inflammatory responses by negative regulation of mitogen-activated protein kinase signaling pathway in vivo.
Atopic dermatitis (AD) is a chronic inflammatory skin disease. Korean red ginseng is a Korean traditional medicine. In this study, we estimated the effects of Korean red ginseng water extract (RGE) in the 1-chloro-2,4-dinitrobenzene (DNCB)-induced BALB/c mouse model which develops AD-like lesions. ⋯ These inhibitory RGE effects are mediated by inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Furthermore, we confirmed that RGE suppresses interferon-γ (IFN-γ) and TNF-α-induced expression of macrophage-derived chemokine (MDC) and TARC genes in human keratinocyte (HaCaT) cells. Taken together, these results demonstrate that RGE may exert anti-atopic related to responses by suppression the expression of inflammatory mediators, cytokines, and chemokines via downregulation of MAPK signaling pathways, suggesting that RGE may be an effective therapeutic approach for prevention of AD-like disease.
-
Biomed. Pharmacother. · Aug 2019
microRNA-126 inhibits tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway.
It's critical for tube formation and angiogenesis to repair ischemic myocardium or stroke. This study aimed to investigate role of microRNA-126 (miR-126) in tube formation in human umbilical vein endothelial cells (HUVECs) and associated mechanisms. Primary neural stem cells (NSCs) and HUVECs were cultured and transfected with microRNA-126 mimics and miR-126 inhibitor. ⋯ Atorvastatin significantly increased CD34 and enhanced EGFL7 expression in traumatic brain injury (TBI) rats brain tissues compared to Model group (p < 0.05). miR-126 significantly down-regulated and atorvastatin up-regulated PI3K/AKT signaling pathway (p < 0.05). Atorvastatin significantly increased EGFL7 and down-regulated miR-126 expression in TBI rats brain tissues compared to Model group (p < 0.05). miR-126 interacted with and negatively correlated with EGFL7 gene both in vitro and in TBI models. In conclusion, microRNA-126 inhibited tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway.
-
Biomed. Pharmacother. · Aug 2019
Knockdown of HCP5 exerts tumor-suppressive functions by up-regulating tumor suppressor miR-128-3p in anaplastic thyroid cancer.
Anaplastic thyroid cancer (ATC) is a rare type of thyroid cancer with a high mortality rate. HLA complex P5 (HCP5), a long non-coding RNA (lncRNA), has been shown to be implicated in several types of cancer, such as follicular thyroid carcinoma (PTC), the main type of thyroid cancer. However, the role of HCP5 in ATC remains unclear. ⋯ HCP5 directly bound to miR-128-3p and regulated the expression of miR-128-3p in ARO and SW1736 cells. Furthermore, the effects of HCP5 knockdown on ATC cell viability and apoptosis were attenuated by the inhibitor of miR-128-3p. These findings suggested that knockdown of HCP5 exerted anti-tumor effect via sponging miR-128-3p in ATC, which might provide a potential approach for the treatment of ATC.
-
Biomed. Pharmacother. · Aug 2019
Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo.
Breast cancer is the leading cause of cancer mortality in women worldwide. To overcome the toxic side effects and multidrug resistance (MDR) during doxorubicin (DOX) chemotherapy, an arginine-glycine-aspartic (RGD) tripeptide modified, pH-sensitive solid lipid nanoparticles (SLNs) is employed in this study. In this study, a RGD conjugated, pH sensitive lipid was synthesized using glycerin monostearate (GMS) and adipic acid dihydrazide (HZ) as lipid materials and named RGD-HZ-GMS. ⋯ The mean particle size and zeta potential of the RGD-DOX-SLNs was 96.3 nm and 35.6 mV, respectively. RGD-DOX-SLNs showed 5.58 fold higher area under the plasma concentration - time curve (AUC) compared with DOX solution. Terminal half life (T1/2) and peak concentration (Cmax) of RGD-DOX-SLNs was 10.85 h and 39.12 ± 2.71 L/kg/h. in vitro and in vivo antitumor results indicate that RGD-DOX-SLNs might be a promising novel lipid carrier which could improve breast cancer therapy.